Mathbox for BTernaryTau < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr2 Structured version   Visualization version   GIF version

Theorem lfuhgr2 32514
 Description: A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023.)
Hypotheses
Ref Expression
lfuhgr.1 𝑉 = (Vtx‘𝐺)
lfuhgr.2 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfuhgr2 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem lfuhgr2
StepHypRef Expression
1 lfuhgr.1 . . 3 𝑉 = (Vtx‘𝐺)
2 lfuhgr.2 . . 3 𝐼 = (iEdg‘𝐺)
31, 2lfuhgr 32513 . 2 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
4 uhgredgn0 26935 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
5 eldifsni 4683 . . . . . . . . . 10 (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝑥 ≠ ∅)
64, 5syl 17 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ≠ ∅)
7 hashneq0 13728 . . . . . . . . . 10 (𝑥 ∈ V → (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅))
87elv 3446 . . . . . . . . 9 (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅)
96, 8sylibr 237 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 0 < (♯‘𝑥))
109gt0ne0d 11200 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → (♯‘𝑥) ≠ 0)
11 hashxnn0 13702 . . . . . . . . . 10 (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*)
1211elv 3446 . . . . . . . . 9 (♯‘𝑥) ∈ ℕ0*
13 xnn0n0n1ge2b 12521 . . . . . . . . 9 ((♯‘𝑥) ∈ ℕ0* → (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥)))
1412, 13ax-mp 5 . . . . . . . 8 (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥))
1514biimpi 219 . . . . . . 7 (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥))
1610, 15stoic3 1778 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥))
17163exp 1116 . . . . 5 (𝐺 ∈ UHGraph → (𝑥 ∈ (Edg‘𝐺) → ((♯‘𝑥) ≠ 1 → 2 ≤ (♯‘𝑥))))
1817a2d 29 . . . 4 (𝐺 ∈ UHGraph → ((𝑥 ∈ (Edg‘𝐺) → (♯‘𝑥) ≠ 1) → (𝑥 ∈ (Edg‘𝐺) → 2 ≤ (♯‘𝑥))))
1918ralimdv2 3143 . . 3 (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 → ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
20 1xr 10696 . . . . 5 1 ∈ ℝ*
21 hashxrcl 13721 . . . . . 6 (𝑥 ∈ V → (♯‘𝑥) ∈ ℝ*)
2221elv 3446 . . . . 5 (♯‘𝑥) ∈ ℝ*
23 1lt2 11803 . . . . . 6 1 < 2
24 2re 11706 . . . . . . . 8 2 ∈ ℝ
2524rexri 10695 . . . . . . 7 2 ∈ ℝ*
26 xrltletr 12545 . . . . . . 7 ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ*) → ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥)))
2720, 25, 22, 26mp3an 1458 . . . . . 6 ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥))
2823, 27mpan 689 . . . . 5 (2 ≤ (♯‘𝑥) → 1 < (♯‘𝑥))
29 xrltne 12551 . . . . 5 ((1 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ* ∧ 1 < (♯‘𝑥)) → (♯‘𝑥) ≠ 1)
3020, 22, 28, 29mp3an12i 1462 . . . 4 (2 ≤ (♯‘𝑥) → (♯‘𝑥) ≠ 1)
3130ralimi 3128 . . 3 (∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥) → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)
3219, 31impbid1 228 . 2 (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
333, 32bitr4d 285 1 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∀wral 3106  {crab 3110  Vcvv 3441   ∖ cdif 3878  ∅c0 4243  𝒫 cpw 4497  {csn 4525   class class class wbr 5031  dom cdm 5520  ⟶wf 6323  ‘cfv 6327  0cc0 10533  1c1 10534  ℝ*cxr 10670   < clt 10671   ≤ cle 10672  2c2 11687  ℕ0*cxnn0 11962  ♯chash 13693  Vtxcvtx 26803  iEdgciedg 26804  Edgcedg 26854  UHGraphcuhgr 26863 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-er 8279  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-2 11695  df-n0 11893  df-xnn0 11963  df-z 11977  df-uz 12239  df-fz 12893  df-hash 13694  df-edg 26855  df-uhgr 26865 This theorem is referenced by:  lfuhgr3  32515
 Copyright terms: Public domain W3C validator