![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfuhgr2 | Structured version Visualization version GIF version |
Description: A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023.) |
Ref | Expression |
---|---|
lfuhgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
lfuhgr.2 | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
lfuhgr2 | ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfuhgr.1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | lfuhgr.2 | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 1, 2 | lfuhgr 34096 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
4 | uhgredgn0 28377 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
5 | eldifsni 4792 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝑥 ≠ ∅) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ≠ ∅) |
7 | hashneq0 14320 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅)) | |
8 | 7 | elv 3480 | . . . . . . . . 9 ⊢ (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅) |
9 | 6, 8 | sylibr 233 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 0 < (♯‘𝑥)) |
10 | 9 | gt0ne0d 11774 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → (♯‘𝑥) ≠ 0) |
11 | hashxnn0 14295 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*) | |
12 | 11 | elv 3480 | . . . . . . . . 9 ⊢ (♯‘𝑥) ∈ ℕ0* |
13 | xnn0n0n1ge2b 13107 | . . . . . . . . 9 ⊢ ((♯‘𝑥) ∈ ℕ0* → (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥))) | |
14 | 12, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥)) |
15 | 14 | biimpi 215 | . . . . . . 7 ⊢ (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥)) |
16 | 10, 15 | stoic3 1778 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥)) |
17 | 16 | 3exp 1119 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝑥 ∈ (Edg‘𝐺) → ((♯‘𝑥) ≠ 1 → 2 ≤ (♯‘𝑥)))) |
18 | 17 | a2d 29 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((𝑥 ∈ (Edg‘𝐺) → (♯‘𝑥) ≠ 1) → (𝑥 ∈ (Edg‘𝐺) → 2 ≤ (♯‘𝑥)))) |
19 | 18 | ralimdv2 3163 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 → ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
20 | 1xr 11269 | . . . . 5 ⊢ 1 ∈ ℝ* | |
21 | hashxrcl 14313 | . . . . . 6 ⊢ (𝑥 ∈ V → (♯‘𝑥) ∈ ℝ*) | |
22 | 21 | elv 3480 | . . . . 5 ⊢ (♯‘𝑥) ∈ ℝ* |
23 | 1lt2 12379 | . . . . . 6 ⊢ 1 < 2 | |
24 | 2re 12282 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
25 | 24 | rexri 11268 | . . . . . . 7 ⊢ 2 ∈ ℝ* |
26 | xrltletr 13132 | . . . . . . 7 ⊢ ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ*) → ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥))) | |
27 | 20, 25, 22, 26 | mp3an 1461 | . . . . . 6 ⊢ ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥)) |
28 | 23, 27 | mpan 688 | . . . . 5 ⊢ (2 ≤ (♯‘𝑥) → 1 < (♯‘𝑥)) |
29 | xrltne 13138 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ* ∧ 1 < (♯‘𝑥)) → (♯‘𝑥) ≠ 1) | |
30 | 20, 22, 28, 29 | mp3an12i 1465 | . . . 4 ⊢ (2 ≤ (♯‘𝑥) → (♯‘𝑥) ≠ 1) |
31 | 30 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥) → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1) |
32 | 19, 31 | impbid1 224 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
33 | 3, 32 | bitr4d 281 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∀wral 3061 {crab 3432 Vcvv 3474 ∖ cdif 3944 ∅c0 4321 𝒫 cpw 4601 {csn 4627 class class class wbr 5147 dom cdm 5675 ⟶wf 6536 ‘cfv 6540 0cc0 11106 1c1 11107 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 2c2 12263 ℕ0*cxnn0 12540 ♯chash 14286 Vtxcvtx 28245 iEdgciedg 28246 Edgcedg 28296 UHGraphcuhgr 28305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-hash 14287 df-edg 28297 df-uhgr 28307 |
This theorem is referenced by: lfuhgr3 34098 |
Copyright terms: Public domain | W3C validator |