Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfuhgr2 | Structured version Visualization version GIF version |
Description: A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023.) |
Ref | Expression |
---|---|
lfuhgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
lfuhgr.2 | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
lfuhgr2 | ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfuhgr.1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | lfuhgr.2 | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
3 | 1, 2 | lfuhgr 33376 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
4 | uhgredgn0 27787 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
5 | eldifsni 4742 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝑥 ≠ ∅) | |
6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ≠ ∅) |
7 | hashneq0 14184 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅)) | |
8 | 7 | elv 3448 | . . . . . . . . 9 ⊢ (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅) |
9 | 6, 8 | sylibr 233 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 0 < (♯‘𝑥)) |
10 | 9 | gt0ne0d 11645 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → (♯‘𝑥) ≠ 0) |
11 | hashxnn0 14159 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*) | |
12 | 11 | elv 3448 | . . . . . . . . 9 ⊢ (♯‘𝑥) ∈ ℕ0* |
13 | xnn0n0n1ge2b 12973 | . . . . . . . . 9 ⊢ ((♯‘𝑥) ∈ ℕ0* → (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥))) | |
14 | 12, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥)) |
15 | 14 | biimpi 215 | . . . . . . 7 ⊢ (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥)) |
16 | 10, 15 | stoic3 1778 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥)) |
17 | 16 | 3exp 1119 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝑥 ∈ (Edg‘𝐺) → ((♯‘𝑥) ≠ 1 → 2 ≤ (♯‘𝑥)))) |
18 | 17 | a2d 29 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((𝑥 ∈ (Edg‘𝐺) → (♯‘𝑥) ≠ 1) → (𝑥 ∈ (Edg‘𝐺) → 2 ≤ (♯‘𝑥)))) |
19 | 18 | ralimdv2 3157 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 → ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
20 | 1xr 11140 | . . . . 5 ⊢ 1 ∈ ℝ* | |
21 | hashxrcl 14177 | . . . . . 6 ⊢ (𝑥 ∈ V → (♯‘𝑥) ∈ ℝ*) | |
22 | 21 | elv 3448 | . . . . 5 ⊢ (♯‘𝑥) ∈ ℝ* |
23 | 1lt2 12250 | . . . . . 6 ⊢ 1 < 2 | |
24 | 2re 12153 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
25 | 24 | rexri 11139 | . . . . . . 7 ⊢ 2 ∈ ℝ* |
26 | xrltletr 12997 | . . . . . . 7 ⊢ ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ*) → ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥))) | |
27 | 20, 25, 22, 26 | mp3an 1461 | . . . . . 6 ⊢ ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥)) |
28 | 23, 27 | mpan 688 | . . . . 5 ⊢ (2 ≤ (♯‘𝑥) → 1 < (♯‘𝑥)) |
29 | xrltne 13003 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ* ∧ 1 < (♯‘𝑥)) → (♯‘𝑥) ≠ 1) | |
30 | 20, 22, 28, 29 | mp3an12i 1465 | . . . 4 ⊢ (2 ≤ (♯‘𝑥) → (♯‘𝑥) ≠ 1) |
31 | 30 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥) → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1) |
32 | 19, 31 | impbid1 224 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
33 | 3, 32 | bitr4d 282 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∀wral 3062 {crab 3404 Vcvv 3442 ∖ cdif 3899 ∅c0 4274 𝒫 cpw 4552 {csn 4578 class class class wbr 5097 dom cdm 5625 ⟶wf 6480 ‘cfv 6484 0cc0 10977 1c1 10978 ℝ*cxr 11114 < clt 11115 ≤ cle 11116 2c2 12134 ℕ0*cxnn0 12411 ♯chash 14150 Vtxcvtx 27655 iEdgciedg 27656 Edgcedg 27706 UHGraphcuhgr 27715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-n0 12340 df-xnn0 12412 df-z 12426 df-uz 12689 df-fz 13346 df-hash 14151 df-edg 27707 df-uhgr 27717 |
This theorem is referenced by: lfuhgr3 33378 |
Copyright terms: Public domain | W3C validator |