Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfuhgr2 Structured version   Visualization version   GIF version

Theorem lfuhgr2 34761
Description: A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023.)
Hypotheses
Ref Expression
lfuhgr.1 𝑉 = (Vtx‘𝐺)
lfuhgr.2 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
lfuhgr2 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1))
Distinct variable groups:   𝑥,𝐺   𝑥,𝑉
Allowed substitution hint:   𝐼(𝑥)

Proof of Theorem lfuhgr2
StepHypRef Expression
1 lfuhgr.1 . . 3 𝑉 = (Vtx‘𝐺)
2 lfuhgr.2 . . 3 𝐼 = (iEdg‘𝐺)
31, 2lfuhgr 34760 . 2 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
4 uhgredgn0 28961 . . . . . . . . . 10 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}))
5 eldifsni 4798 . . . . . . . . . 10 (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝑥 ≠ ∅)
64, 5syl 17 . . . . . . . . 9 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ≠ ∅)
7 hashneq0 14363 . . . . . . . . . 10 (𝑥 ∈ V → (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅))
87elv 3479 . . . . . . . . 9 (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅)
96, 8sylibr 233 . . . . . . . 8 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 0 < (♯‘𝑥))
109gt0ne0d 11816 . . . . . . 7 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → (♯‘𝑥) ≠ 0)
11 hashxnn0 14338 . . . . . . . . . 10 (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*)
1211elv 3479 . . . . . . . . 9 (♯‘𝑥) ∈ ℕ0*
13 xnn0n0n1ge2b 13151 . . . . . . . . 9 ((♯‘𝑥) ∈ ℕ0* → (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥)))
1412, 13ax-mp 5 . . . . . . . 8 (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥))
1514biimpi 215 . . . . . . 7 (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥))
1610, 15stoic3 1770 . . . . . 6 ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥))
17163exp 1116 . . . . 5 (𝐺 ∈ UHGraph → (𝑥 ∈ (Edg‘𝐺) → ((♯‘𝑥) ≠ 1 → 2 ≤ (♯‘𝑥))))
1817a2d 29 . . . 4 (𝐺 ∈ UHGraph → ((𝑥 ∈ (Edg‘𝐺) → (♯‘𝑥) ≠ 1) → (𝑥 ∈ (Edg‘𝐺) → 2 ≤ (♯‘𝑥))))
1918ralimdv2 3160 . . 3 (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 → ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
20 1xr 11311 . . . . 5 1 ∈ ℝ*
21 hashxrcl 14356 . . . . . 6 (𝑥 ∈ V → (♯‘𝑥) ∈ ℝ*)
2221elv 3479 . . . . 5 (♯‘𝑥) ∈ ℝ*
23 1lt2 12421 . . . . . 6 1 < 2
24 2re 12324 . . . . . . . 8 2 ∈ ℝ
2524rexri 11310 . . . . . . 7 2 ∈ ℝ*
26 xrltletr 13176 . . . . . . 7 ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ*) → ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥)))
2720, 25, 22, 26mp3an 1457 . . . . . 6 ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥))
2823, 27mpan 688 . . . . 5 (2 ≤ (♯‘𝑥) → 1 < (♯‘𝑥))
29 xrltne 13182 . . . . 5 ((1 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ* ∧ 1 < (♯‘𝑥)) → (♯‘𝑥) ≠ 1)
3020, 22, 28, 29mp3an12i 1461 . . . 4 (2 ≤ (♯‘𝑥) → (♯‘𝑥) ≠ 1)
3130ralimi 3080 . . 3 (∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥) → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)
3219, 31impbid1 224 . 2 (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥)))
333, 32bitr4d 281 1 (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wne 2937  wral 3058  {crab 3430  Vcvv 3473  cdif 3946  c0 4326  𝒫 cpw 4606  {csn 4632   class class class wbr 5152  dom cdm 5682  wf 6549  cfv 6553  0cc0 11146  1c1 11147  *cxr 11285   < clt 11286  cle 11287  2c2 12305  0*cxnn0 12582  chash 14329  Vtxcvtx 28829  iEdgciedg 28830  Edgcedg 28880  UHGraphcuhgr 28889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-xnn0 12583  df-z 12597  df-uz 12861  df-fz 13525  df-hash 14330  df-edg 28881  df-uhgr 28891
This theorem is referenced by:  lfuhgr3  34762
  Copyright terms: Public domain W3C validator