| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfuhgr2 | Structured version Visualization version GIF version | ||
| Description: A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023.) |
| Ref | Expression |
|---|---|
| lfuhgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| lfuhgr.2 | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| lfuhgr2 | ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfuhgr.1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | lfuhgr.2 | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 1, 2 | lfuhgr 35098 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
| 4 | uhgredgn0 29074 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
| 5 | eldifsni 4770 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝑥 ≠ ∅) | |
| 6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ≠ ∅) |
| 7 | hashneq0 14386 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅)) | |
| 8 | 7 | elv 3468 | . . . . . . . . 9 ⊢ (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅) |
| 9 | 6, 8 | sylibr 234 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 0 < (♯‘𝑥)) |
| 10 | 9 | gt0ne0d 11809 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → (♯‘𝑥) ≠ 0) |
| 11 | hashxnn0 14361 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*) | |
| 12 | 11 | elv 3468 | . . . . . . . . 9 ⊢ (♯‘𝑥) ∈ ℕ0* |
| 13 | xnn0n0n1ge2b 13156 | . . . . . . . . 9 ⊢ ((♯‘𝑥) ∈ ℕ0* → (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥))) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥)) |
| 15 | 14 | biimpi 216 | . . . . . . 7 ⊢ (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥)) |
| 16 | 10, 15 | stoic3 1775 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥)) |
| 17 | 16 | 3exp 1119 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝑥 ∈ (Edg‘𝐺) → ((♯‘𝑥) ≠ 1 → 2 ≤ (♯‘𝑥)))) |
| 18 | 17 | a2d 29 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((𝑥 ∈ (Edg‘𝐺) → (♯‘𝑥) ≠ 1) → (𝑥 ∈ (Edg‘𝐺) → 2 ≤ (♯‘𝑥)))) |
| 19 | 18 | ralimdv2 3150 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 → ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
| 20 | 1xr 11302 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 21 | hashxrcl 14379 | . . . . . 6 ⊢ (𝑥 ∈ V → (♯‘𝑥) ∈ ℝ*) | |
| 22 | 21 | elv 3468 | . . . . 5 ⊢ (♯‘𝑥) ∈ ℝ* |
| 23 | 1lt2 12419 | . . . . . 6 ⊢ 1 < 2 | |
| 24 | 2re 12322 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 25 | 24 | rexri 11301 | . . . . . . 7 ⊢ 2 ∈ ℝ* |
| 26 | xrltletr 13181 | . . . . . . 7 ⊢ ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ*) → ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥))) | |
| 27 | 20, 25, 22, 26 | mp3an 1462 | . . . . . 6 ⊢ ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥)) |
| 28 | 23, 27 | mpan 690 | . . . . 5 ⊢ (2 ≤ (♯‘𝑥) → 1 < (♯‘𝑥)) |
| 29 | xrltne 13187 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ* ∧ 1 < (♯‘𝑥)) → (♯‘𝑥) ≠ 1) | |
| 30 | 20, 22, 28, 29 | mp3an12i 1466 | . . . 4 ⊢ (2 ≤ (♯‘𝑥) → (♯‘𝑥) ≠ 1) |
| 31 | 30 | ralimi 3072 | . . 3 ⊢ (∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥) → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1) |
| 32 | 19, 31 | impbid1 225 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
| 33 | 3, 32 | bitr4d 282 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∀wral 3050 {crab 3419 Vcvv 3463 ∖ cdif 3928 ∅c0 4313 𝒫 cpw 4580 {csn 4606 class class class wbr 5123 dom cdm 5665 ⟶wf 6537 ‘cfv 6541 0cc0 11137 1c1 11138 ℝ*cxr 11276 < clt 11277 ≤ cle 11278 2c2 12303 ℕ0*cxnn0 12582 ♯chash 14352 Vtxcvtx 28942 iEdgciedg 28943 Edgcedg 28993 UHGraphcuhgr 29002 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-n0 12510 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13530 df-hash 14353 df-edg 28994 df-uhgr 29004 |
| This theorem is referenced by: lfuhgr3 35100 |
| Copyright terms: Public domain | W3C validator |