| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfuhgr2 | Structured version Visualization version GIF version | ||
| Description: A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023.) |
| Ref | Expression |
|---|---|
| lfuhgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| lfuhgr.2 | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| lfuhgr2 | ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfuhgr.1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | lfuhgr.2 | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 1, 2 | lfuhgr 35154 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
| 4 | uhgredgn0 29101 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
| 5 | eldifsni 4737 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝑥 ≠ ∅) | |
| 6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ≠ ∅) |
| 7 | hashneq0 14266 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅)) | |
| 8 | 7 | elv 3441 | . . . . . . . . 9 ⊢ (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅) |
| 9 | 6, 8 | sylibr 234 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 0 < (♯‘𝑥)) |
| 10 | 9 | gt0ne0d 11676 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → (♯‘𝑥) ≠ 0) |
| 11 | hashxnn0 14241 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*) | |
| 12 | 11 | elv 3441 | . . . . . . . . 9 ⊢ (♯‘𝑥) ∈ ℕ0* |
| 13 | xnn0n0n1ge2b 13026 | . . . . . . . . 9 ⊢ ((♯‘𝑥) ∈ ℕ0* → (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥))) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥)) |
| 15 | 14 | biimpi 216 | . . . . . . 7 ⊢ (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥)) |
| 16 | 10, 15 | stoic3 1777 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥)) |
| 17 | 16 | 3exp 1119 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝑥 ∈ (Edg‘𝐺) → ((♯‘𝑥) ≠ 1 → 2 ≤ (♯‘𝑥)))) |
| 18 | 17 | a2d 29 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((𝑥 ∈ (Edg‘𝐺) → (♯‘𝑥) ≠ 1) → (𝑥 ∈ (Edg‘𝐺) → 2 ≤ (♯‘𝑥)))) |
| 19 | 18 | ralimdv2 3141 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 → ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
| 20 | 1xr 11166 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 21 | hashxrcl 14259 | . . . . . 6 ⊢ (𝑥 ∈ V → (♯‘𝑥) ∈ ℝ*) | |
| 22 | 21 | elv 3441 | . . . . 5 ⊢ (♯‘𝑥) ∈ ℝ* |
| 23 | 1lt2 12286 | . . . . . 6 ⊢ 1 < 2 | |
| 24 | 2re 12194 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 25 | 24 | rexri 11165 | . . . . . . 7 ⊢ 2 ∈ ℝ* |
| 26 | xrltletr 13051 | . . . . . . 7 ⊢ ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ*) → ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥))) | |
| 27 | 20, 25, 22, 26 | mp3an 1463 | . . . . . 6 ⊢ ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥)) |
| 28 | 23, 27 | mpan 690 | . . . . 5 ⊢ (2 ≤ (♯‘𝑥) → 1 < (♯‘𝑥)) |
| 29 | xrltne 13057 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ* ∧ 1 < (♯‘𝑥)) → (♯‘𝑥) ≠ 1) | |
| 30 | 20, 22, 28, 29 | mp3an12i 1467 | . . . 4 ⊢ (2 ≤ (♯‘𝑥) → (♯‘𝑥) ≠ 1) |
| 31 | 30 | ralimi 3069 | . . 3 ⊢ (∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥) → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1) |
| 32 | 19, 31 | impbid1 225 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
| 33 | 3, 32 | bitr4d 282 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 {crab 3395 Vcvv 3436 ∖ cdif 3894 ∅c0 4278 𝒫 cpw 4545 {csn 4571 class class class wbr 5086 dom cdm 5611 ⟶wf 6472 ‘cfv 6476 0cc0 11001 1c1 11002 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 2c2 12175 ℕ0*cxnn0 12449 ♯chash 14232 Vtxcvtx 28969 iEdgciedg 28970 Edgcedg 29020 UHGraphcuhgr 29029 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-hash 14233 df-edg 29021 df-uhgr 29031 |
| This theorem is referenced by: lfuhgr3 35156 |
| Copyright terms: Public domain | W3C validator |