| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfuhgr2 | Structured version Visualization version GIF version | ||
| Description: A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023.) |
| Ref | Expression |
|---|---|
| lfuhgr.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| lfuhgr.2 | ⊢ 𝐼 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| lfuhgr2 | ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfuhgr.1 | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | lfuhgr.2 | . . 3 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 3 | 1, 2 | lfuhgr 35091 | . 2 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
| 4 | uhgredgn0 29073 | . . . . . . . . . 10 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅})) | |
| 5 | eldifsni 4741 | . . . . . . . . . 10 ⊢ (𝑥 ∈ (𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝑥 ≠ ∅) | |
| 6 | 4, 5 | syl 17 | . . . . . . . . 9 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 𝑥 ≠ ∅) |
| 7 | hashneq0 14271 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅)) | |
| 8 | 7 | elv 3441 | . . . . . . . . 9 ⊢ (0 < (♯‘𝑥) ↔ 𝑥 ≠ ∅) |
| 9 | 6, 8 | sylibr 234 | . . . . . . . 8 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → 0 < (♯‘𝑥)) |
| 10 | 9 | gt0ne0d 11684 | . . . . . . 7 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺)) → (♯‘𝑥) ≠ 0) |
| 11 | hashxnn0 14246 | . . . . . . . . . 10 ⊢ (𝑥 ∈ V → (♯‘𝑥) ∈ ℕ0*) | |
| 12 | 11 | elv 3441 | . . . . . . . . 9 ⊢ (♯‘𝑥) ∈ ℕ0* |
| 13 | xnn0n0n1ge2b 13034 | . . . . . . . . 9 ⊢ ((♯‘𝑥) ∈ ℕ0* → (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥))) | |
| 14 | 12, 13 | ax-mp 5 | . . . . . . . 8 ⊢ (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) ↔ 2 ≤ (♯‘𝑥)) |
| 15 | 14 | biimpi 216 | . . . . . . 7 ⊢ (((♯‘𝑥) ≠ 0 ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥)) |
| 16 | 10, 15 | stoic3 1776 | . . . . . 6 ⊢ ((𝐺 ∈ UHGraph ∧ 𝑥 ∈ (Edg‘𝐺) ∧ (♯‘𝑥) ≠ 1) → 2 ≤ (♯‘𝑥)) |
| 17 | 16 | 3exp 1119 | . . . . 5 ⊢ (𝐺 ∈ UHGraph → (𝑥 ∈ (Edg‘𝐺) → ((♯‘𝑥) ≠ 1 → 2 ≤ (♯‘𝑥)))) |
| 18 | 17 | a2d 29 | . . . 4 ⊢ (𝐺 ∈ UHGraph → ((𝑥 ∈ (Edg‘𝐺) → (♯‘𝑥) ≠ 1) → (𝑥 ∈ (Edg‘𝐺) → 2 ≤ (♯‘𝑥)))) |
| 19 | 18 | ralimdv2 3138 | . . 3 ⊢ (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 → ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
| 20 | 1xr 11174 | . . . . 5 ⊢ 1 ∈ ℝ* | |
| 21 | hashxrcl 14264 | . . . . . 6 ⊢ (𝑥 ∈ V → (♯‘𝑥) ∈ ℝ*) | |
| 22 | 21 | elv 3441 | . . . . 5 ⊢ (♯‘𝑥) ∈ ℝ* |
| 23 | 1lt2 12294 | . . . . . 6 ⊢ 1 < 2 | |
| 24 | 2re 12202 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 25 | 24 | rexri 11173 | . . . . . . 7 ⊢ 2 ∈ ℝ* |
| 26 | xrltletr 13059 | . . . . . . 7 ⊢ ((1 ∈ ℝ* ∧ 2 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ*) → ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥))) | |
| 27 | 20, 25, 22, 26 | mp3an 1463 | . . . . . 6 ⊢ ((1 < 2 ∧ 2 ≤ (♯‘𝑥)) → 1 < (♯‘𝑥)) |
| 28 | 23, 27 | mpan 690 | . . . . 5 ⊢ (2 ≤ (♯‘𝑥) → 1 < (♯‘𝑥)) |
| 29 | xrltne 13065 | . . . . 5 ⊢ ((1 ∈ ℝ* ∧ (♯‘𝑥) ∈ ℝ* ∧ 1 < (♯‘𝑥)) → (♯‘𝑥) ≠ 1) | |
| 30 | 20, 22, 28, 29 | mp3an12i 1467 | . . . 4 ⊢ (2 ≤ (♯‘𝑥) → (♯‘𝑥) ≠ 1) |
| 31 | 30 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥) → ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1) |
| 32 | 19, 31 | impbid1 225 | . 2 ⊢ (𝐺 ∈ UHGraph → (∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1 ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) |
| 33 | 3, 32 | bitr4d 282 | 1 ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3394 Vcvv 3436 ∖ cdif 3900 ∅c0 4284 𝒫 cpw 4551 {csn 4577 class class class wbr 5092 dom cdm 5619 ⟶wf 6478 ‘cfv 6482 0cc0 11009 1c1 11010 ℝ*cxr 11148 < clt 11149 ≤ cle 11150 2c2 12183 ℕ0*cxnn0 12457 ♯chash 14237 Vtxcvtx 28941 iEdgciedg 28942 Edgcedg 28992 UHGraphcuhgr 29001 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 df-edg 28993 df-uhgr 29003 |
| This theorem is referenced by: lfuhgr3 35093 |
| Copyright terms: Public domain | W3C validator |