| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > safesnsupfiub | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| safesnsupfiub.small | ⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) |
| safesnsupfiub.finite | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| safesnsupfiub.subset | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| safesnsupfiub.ordered | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| safesnsupfiub.ub | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) |
| Ref | Expression |
|---|---|
| safesnsupfiub | ⊢ (𝜑 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | safesnsupfiub.ub | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) | |
| 2 | safesnsupfiub.small | . . . . . 6 ⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) | |
| 3 | safesnsupfiub.finite | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 4 | safesnsupfiub.subset | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 5 | safesnsupfiub.ordered | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 6 | 2, 3, 4, 5 | safesnsupfiss 43411 | . . . . 5 ⊢ (𝜑 → if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵) |
| 7 | 6 | sseld 3948 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → 𝑥 ∈ 𝐵)) |
| 8 | 7 | imim1d 82 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 → ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) → (𝑥 ∈ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦))) |
| 9 | 8 | ralimdv2 3143 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦)) |
| 10 | 1, 9 | mpd 15 | 1 ⊢ (𝜑 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ∅c0 4299 ifcif 4491 {csn 4592 class class class wbr 5110 Or wor 5548 1oc1o 8430 ≺ csdm 8920 Fincfn 8921 supcsup 9398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-om 7846 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |