Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  safesnsupfiub Structured version   Visualization version   GIF version

Theorem safesnsupfiub 43428
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.)
Hypotheses
Ref Expression
safesnsupfiub.small (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
safesnsupfiub.finite (𝜑𝐵 ∈ Fin)
safesnsupfiub.subset (𝜑𝐵𝐴)
safesnsupfiub.ordered (𝜑𝑅 Or 𝐴)
safesnsupfiub.ub (𝜑 → ∀𝑥𝐵𝑦𝐶 𝑥𝑅𝑦)
Assertion
Ref Expression
safesnsupfiub (𝜑 → ∀𝑥 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦𝐶 𝑥𝑅𝑦)
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem safesnsupfiub
StepHypRef Expression
1 safesnsupfiub.ub . 2 (𝜑 → ∀𝑥𝐵𝑦𝐶 𝑥𝑅𝑦)
2 safesnsupfiub.small . . . . . 6 (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o))
3 safesnsupfiub.finite . . . . . 6 (𝜑𝐵 ∈ Fin)
4 safesnsupfiub.subset . . . . . 6 (𝜑𝐵𝐴)
5 safesnsupfiub.ordered . . . . . 6 (𝜑𝑅 Or 𝐴)
62, 3, 4, 5safesnsupfiss 43427 . . . . 5 (𝜑 → if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵)
76sseld 3931 . . . 4 (𝜑 → (𝑥 ∈ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → 𝑥𝐵))
87imim1d 82 . . 3 (𝜑 → ((𝑥𝐵 → ∀𝑦𝐶 𝑥𝑅𝑦) → (𝑥 ∈ if(𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → ∀𝑦𝐶 𝑥𝑅𝑦)))
98ralimdv2 3139 . 2 (𝜑 → (∀𝑥𝐵𝑦𝐶 𝑥𝑅𝑦 → ∀𝑥 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦𝐶 𝑥𝑅𝑦))
101, 9mpd 15 1 (𝜑 → ∀𝑥 ∈ if (𝑂𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦𝐶 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2110  wral 3045  wss 3900  c0 4281  ifcif 4473  {csn 4574   class class class wbr 5089   Or wor 5521  1oc1o 8373  csdm 8863  Fincfn 8864  supcsup 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-om 7792  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator