![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > safesnsupfiub | Structured version Visualization version GIF version |
Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
Ref | Expression |
---|---|
safesnsupfiub.small | ⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) |
safesnsupfiub.finite | ⊢ (𝜑 → 𝐵 ∈ Fin) |
safesnsupfiub.subset | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
safesnsupfiub.ordered | ⊢ (𝜑 → 𝑅 Or 𝐴) |
safesnsupfiub.ub | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) |
Ref | Expression |
---|---|
safesnsupfiub | ⊢ (𝜑 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | safesnsupfiub.ub | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) | |
2 | safesnsupfiub.small | . . . . . 6 ⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) | |
3 | safesnsupfiub.finite | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
4 | safesnsupfiub.subset | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
5 | safesnsupfiub.ordered | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
6 | 2, 3, 4, 5 | safesnsupfiss 43369 | . . . . 5 ⊢ (𝜑 → if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵) |
7 | 6 | sseld 4007 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → 𝑥 ∈ 𝐵)) |
8 | 7 | imim1d 82 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 → ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) → (𝑥 ∈ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦))) |
9 | 8 | ralimdv2 3165 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦)) |
10 | 1, 9 | mpd 15 | 1 ⊢ (𝜑 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2103 ∀wral 3063 ⊆ wss 3976 ∅c0 4353 ifcif 4554 {csn 4654 class class class wbr 5176 Or wor 5617 1oc1o 8520 ≺ csdm 9007 Fincfn 9008 supcsup 9514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-sep 5327 ax-nul 5334 ax-pow 5393 ax-pr 5457 ax-un 7775 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rmo 3384 df-reu 3385 df-rab 3440 df-v 3486 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4354 df-if 4555 df-pw 4630 df-sn 4655 df-pr 4657 df-op 4661 df-uni 4938 df-br 5177 df-opab 5239 df-tr 5294 df-id 5604 df-eprel 5610 df-po 5618 df-so 5619 df-fr 5661 df-we 5663 df-xp 5712 df-rel 5713 df-cnv 5714 df-co 5715 df-dm 5716 df-rn 5717 df-res 5718 df-ima 5719 df-ord 6404 df-on 6405 df-lim 6406 df-suc 6407 df-iota 6531 df-fun 6581 df-fn 6582 df-f 6583 df-f1 6584 df-fo 6585 df-f1o 6586 df-fv 6587 df-riota 7410 df-om 7909 df-1o 8527 df-er 8768 df-en 9009 df-dom 9010 df-sdom 9011 df-fin 9012 df-sup 9516 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |