| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > safesnsupfiub | Structured version Visualization version GIF version | ||
| Description: If 𝐵 is a finite subset of ordered class 𝐴, we can safely create a small subset with the same largest element and upper bound, if any. (Contributed by RP, 1-Sep-2024.) |
| Ref | Expression |
|---|---|
| safesnsupfiub.small | ⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) |
| safesnsupfiub.finite | ⊢ (𝜑 → 𝐵 ∈ Fin) |
| safesnsupfiub.subset | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| safesnsupfiub.ordered | ⊢ (𝜑 → 𝑅 Or 𝐴) |
| safesnsupfiub.ub | ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) |
| Ref | Expression |
|---|---|
| safesnsupfiub | ⊢ (𝜑 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | safesnsupfiub.ub | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) | |
| 2 | safesnsupfiub.small | . . . . . 6 ⊢ (𝜑 → (𝑂 = ∅ ∨ 𝑂 = 1o)) | |
| 3 | safesnsupfiub.finite | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ Fin) | |
| 4 | safesnsupfiub.subset | . . . . . 6 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 5 | safesnsupfiub.ordered | . . . . . 6 ⊢ (𝜑 → 𝑅 Or 𝐴) | |
| 6 | 2, 3, 4, 5 | safesnsupfiss 43522 | . . . . 5 ⊢ (𝜑 → if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) ⊆ 𝐵) |
| 7 | 6 | sseld 3930 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → 𝑥 ∈ 𝐵)) |
| 8 | 7 | imim1d 82 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐵 → ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) → (𝑥 ∈ if(𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵) → ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦))) |
| 9 | 8 | ralimdv2 3143 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑥𝑅𝑦 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦)) |
| 10 | 1, 9 | mpd 15 | 1 ⊢ (𝜑 → ∀𝑥 ∈ if (𝑂 ≺ 𝐵, {sup(𝐵, 𝐴, 𝑅)}, 𝐵)∀𝑦 ∈ 𝐶 𝑥𝑅𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 ∀wral 3049 ⊆ wss 3899 ∅c0 4284 ifcif 4476 {csn 4577 class class class wbr 5095 Or wor 5528 1oc1o 8387 ≺ csdm 8877 Fincfn 8878 supcsup 9334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-om 7806 df-1o 8394 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |