Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvgcaule Structured version   Visualization version   GIF version

Theorem cvgcaule 45407
Description: A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
cvgcaule.1 𝑗𝐹
cvgcaule.2 𝑘𝐹
cvgcaule.3 (𝜑𝑀𝑍)
cvgcaule.4 (𝜑𝐹𝑉)
cvgcaule.5 𝑍 = (ℤ𝑀)
cvgcaule.6 (𝜑𝐹 ∈ dom ⇝ )
cvgcaule.7 (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
cvgcaule (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
Distinct variable groups:   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑗,𝑘)   𝑀(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem cvgcaule
StepHypRef Expression
1 cvgcaule.7 . 2 (𝜑𝑋 ∈ ℝ+)
2 cvgcaule.1 . . 3 𝑗𝐹
3 cvgcaule.2 . . 3 𝑘𝐹
4 cvgcaule.3 . . 3 (𝜑𝑀𝑍)
5 cvgcaule.4 . . 3 (𝜑𝐹𝑉)
6 cvgcaule.5 . . 3 𝑍 = (ℤ𝑀)
7 cvgcaule.6 . . 3 (𝜑𝐹 ∈ dom ⇝ )
82, 3, 4, 5, 6, 7, 1cvgcau 45406 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
9 nfv 1913 . . . . . 6 𝑘(𝑋 ∈ ℝ+𝑗𝑍)
10 nfra1 3290 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)
119, 10nfan 1898 . . . . 5 𝑘((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
12 rspa 3254 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
1312simpld 494 . . . . . . 7 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
1413adantll 713 . . . . . 6 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
1513adantll 713 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
166uzid3 45350 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
17 nfcv 2908 . . . . . . . . . . . . . . . . . 18 𝑘𝑗
183, 17nffv 6930 . . . . . . . . . . . . . . . . 17 𝑘(𝐹𝑗)
1918nfel1 2925 . . . . . . . . . . . . . . . 16 𝑘(𝐹𝑗) ∈ ℂ
20 nfcv 2908 . . . . . . . . . . . . . . . . . 18 𝑘abs
21 nfcv 2908 . . . . . . . . . . . . . . . . . . 19 𝑘
2218, 21, 18nfov 7478 . . . . . . . . . . . . . . . . . 18 𝑘((𝐹𝑗) − (𝐹𝑗))
2320, 22nffv 6930 . . . . . . . . . . . . . . . . 17 𝑘(abs‘((𝐹𝑗) − (𝐹𝑗)))
24 nfcv 2908 . . . . . . . . . . . . . . . . 17 𝑘 <
25 nfcv 2908 . . . . . . . . . . . . . . . . 17 𝑘𝑋
2623, 24, 25nfbr 5213 . . . . . . . . . . . . . . . 16 𝑘(abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋
2719, 26nfan 1898 . . . . . . . . . . . . . . 15 𝑘((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)
28 fveq2 6920 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
2928eleq1d 2829 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
3028fvoveq1d 7470 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑗) − (𝐹𝑗))))
3130breq1d 5176 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋 ↔ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋))
3229, 31anbi12d 631 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ↔ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3327, 32rspc 3623 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3416, 33syl 17 . . . . . . . . . . . . 13 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3534imp 406 . . . . . . . . . . . 12 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋))
3635simpld 494 . . . . . . . . . . 11 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → (𝐹𝑗) ∈ ℂ)
3736adantr 480 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ ℂ)
3815, 37subcld 11647 . . . . . . . . 9 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
3938abscld 15485 . . . . . . . 8 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
4039adantlll 717 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
41 simplll 774 . . . . . . . 8 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑋 ∈ ℝ+)
4241rpred 13099 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑋 ∈ ℝ)
4312adantll 713 . . . . . . . 8 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
4443simprd 495 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)
4540, 42, 44ltled 11438 . . . . . 6 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)
4614, 45jca 511 . . . . 5 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
4711, 46ralrimia 3264 . . . 4 (((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
4847ex 412 . . 3 ((𝑋 ∈ ℝ+𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)))
4948reximdva 3174 . 2 (𝑋 ∈ ℝ+ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)))
501, 8, 49sylc 65 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wnfc 2893  wral 3067  wrex 3076   class class class wbr 5166  dom cdm 5700  cfv 6573  (class class class)co 7448  cc 11182  cr 11183   < clt 11324  cle 11325  cmin 11520  cuz 12903  +crp 13057  abscabs 15283  cli 15530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-ico 13413  df-fl 13843  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator