Step | Hyp | Ref
| Expression |
1 | | cvgcaule.7 |
. 2
⊢ (𝜑 → 𝑋 ∈
ℝ+) |
2 | | cvgcaule.1 |
. . 3
⊢
Ⅎ𝑗𝐹 |
3 | | cvgcaule.2 |
. . 3
⊢
Ⅎ𝑘𝐹 |
4 | | cvgcaule.3 |
. . 3
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
5 | | cvgcaule.4 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
6 | | cvgcaule.5 |
. . 3
⊢ 𝑍 =
(ℤ≥‘𝑀) |
7 | | cvgcaule.6 |
. . 3
⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
8 | 2, 3, 4, 5, 6, 7, 1 | cvgcau 44187 |
. 2
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) |
9 | | nfv 1917 |
. . . . . 6
⊢
Ⅎ𝑘(𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) |
10 | | nfra1 3281 |
. . . . . 6
⊢
Ⅎ𝑘∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋) |
11 | 9, 10 | nfan 1902 |
. . . . 5
⊢
Ⅎ𝑘((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) |
12 | | rspa 3245 |
. . . . . . . 8
⊢
((∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) |
13 | 12 | simpld 495 |
. . . . . . 7
⊢
((∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
14 | 13 | adantll 712 |
. . . . . 6
⊢ ((((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
15 | 13 | adantll 712 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑘) ∈ ℂ) |
16 | 6 | uzid3 44131 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ (ℤ≥‘𝑗)) |
17 | | nfcv 2903 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘𝑗 |
18 | 3, 17 | nffv 6898 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(𝐹‘𝑗) |
19 | 18 | nfel1 2919 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(𝐹‘𝑗) ∈ ℂ |
20 | | nfcv 2903 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘abs |
21 | | nfcv 2903 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑘
− |
22 | 18, 21, 18 | nfov 7435 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑘((𝐹‘𝑗) − (𝐹‘𝑗)) |
23 | 20, 22 | nffv 6898 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘(abs‘((𝐹‘𝑗) − (𝐹‘𝑗))) |
24 | | nfcv 2903 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘
< |
25 | | nfcv 2903 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑘𝑋 |
26 | 23, 24, 25 | nfbr 5194 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(abs‘((𝐹‘𝑗) − (𝐹‘𝑗))) < 𝑋 |
27 | 19, 26 | nfan 1902 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑗))) < 𝑋) |
28 | | fveq2 6888 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑗 → (𝐹‘𝑘) = (𝐹‘𝑗)) |
29 | 28 | eleq1d 2818 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → ((𝐹‘𝑘) ∈ ℂ ↔ (𝐹‘𝑗) ∈ ℂ)) |
30 | 28 | fvoveq1d 7427 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑗 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑗) − (𝐹‘𝑗)))) |
31 | 30 | breq1d 5157 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑗 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋 ↔ (abs‘((𝐹‘𝑗) − (𝐹‘𝑗))) < 𝑋)) |
32 | 29, 31 | anbi12d 631 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋) ↔ ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑗))) < 𝑋))) |
33 | 27, 32 | rspc 3600 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈
(ℤ≥‘𝑗) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋) → ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑗))) < 𝑋))) |
34 | 16, 33 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑗 ∈ 𝑍 → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋) → ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑗))) < 𝑋))) |
35 | 34 | imp 407 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) → ((𝐹‘𝑗) ∈ ℂ ∧ (abs‘((𝐹‘𝑗) − (𝐹‘𝑗))) < 𝑋)) |
36 | 35 | simpld 495 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) → (𝐹‘𝑗) ∈ ℂ) |
37 | 36 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑗) ∈ ℂ) |
38 | 15, 37 | subcld 11567 |
. . . . . . . . 9
⊢ (((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) − (𝐹‘𝑗)) ∈ ℂ) |
39 | 38 | abscld 15379 |
. . . . . . . 8
⊢ (((𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∈ ℝ) |
40 | 39 | adantlll 716 |
. . . . . . 7
⊢ ((((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ∈ ℝ) |
41 | | simplll 773 |
. . . . . . . 8
⊢ ((((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑋 ∈
ℝ+) |
42 | 41 | rpred 13012 |
. . . . . . 7
⊢ ((((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑋 ∈ ℝ) |
43 | 12 | adantll 712 |
. . . . . . . 8
⊢ ((((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) |
44 | 43 | simprd 496 |
. . . . . . 7
⊢ ((((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋) |
45 | 40, 42, 44 | ltled 11358 |
. . . . . 6
⊢ ((((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ≤ 𝑋) |
46 | 14, 45 | jca 512 |
. . . . 5
⊢ ((((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ≤ 𝑋)) |
47 | 11, 46 | ralrimia 3255 |
. . . 4
⊢ (((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) ∧ ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋)) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ≤ 𝑋)) |
48 | 47 | ex 413 |
. . 3
⊢ ((𝑋 ∈ ℝ+
∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋) → ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ≤ 𝑋))) |
49 | 48 | reximdva 3168 |
. 2
⊢ (𝑋 ∈ ℝ+
→ (∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑋) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ≤ 𝑋))) |
50 | 1, 8, 49 | sylc 65 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℂ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) ≤ 𝑋)) |