Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvgcaule Structured version   Visualization version   GIF version

Theorem cvgcaule 44909
Description: A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
cvgcaule.1 𝑗𝐹
cvgcaule.2 𝑘𝐹
cvgcaule.3 (𝜑𝑀𝑍)
cvgcaule.4 (𝜑𝐹𝑉)
cvgcaule.5 𝑍 = (ℤ𝑀)
cvgcaule.6 (𝜑𝐹 ∈ dom ⇝ )
cvgcaule.7 (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
cvgcaule (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
Distinct variable groups:   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑗,𝑘)   𝑀(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem cvgcaule
StepHypRef Expression
1 cvgcaule.7 . 2 (𝜑𝑋 ∈ ℝ+)
2 cvgcaule.1 . . 3 𝑗𝐹
3 cvgcaule.2 . . 3 𝑘𝐹
4 cvgcaule.3 . . 3 (𝜑𝑀𝑍)
5 cvgcaule.4 . . 3 (𝜑𝐹𝑉)
6 cvgcaule.5 . . 3 𝑍 = (ℤ𝑀)
7 cvgcaule.6 . . 3 (𝜑𝐹 ∈ dom ⇝ )
82, 3, 4, 5, 6, 7, 1cvgcau 44908 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
9 nfv 1909 . . . . . 6 𝑘(𝑋 ∈ ℝ+𝑗𝑍)
10 nfra1 3272 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)
119, 10nfan 1894 . . . . 5 𝑘((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
12 rspa 3236 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
1312simpld 493 . . . . . . 7 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
1413adantll 712 . . . . . 6 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
1513adantll 712 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
166uzid3 44852 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
17 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑘𝑗
183, 17nffv 6900 . . . . . . . . . . . . . . . . 17 𝑘(𝐹𝑗)
1918nfel1 2909 . . . . . . . . . . . . . . . 16 𝑘(𝐹𝑗) ∈ ℂ
20 nfcv 2892 . . . . . . . . . . . . . . . . . 18 𝑘abs
21 nfcv 2892 . . . . . . . . . . . . . . . . . . 19 𝑘
2218, 21, 18nfov 7444 . . . . . . . . . . . . . . . . . 18 𝑘((𝐹𝑗) − (𝐹𝑗))
2320, 22nffv 6900 . . . . . . . . . . . . . . . . 17 𝑘(abs‘((𝐹𝑗) − (𝐹𝑗)))
24 nfcv 2892 . . . . . . . . . . . . . . . . 17 𝑘 <
25 nfcv 2892 . . . . . . . . . . . . . . . . 17 𝑘𝑋
2623, 24, 25nfbr 5188 . . . . . . . . . . . . . . . 16 𝑘(abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋
2719, 26nfan 1894 . . . . . . . . . . . . . . 15 𝑘((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)
28 fveq2 6890 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
2928eleq1d 2810 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
3028fvoveq1d 7436 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑗) − (𝐹𝑗))))
3130breq1d 5151 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋 ↔ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋))
3229, 31anbi12d 630 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ↔ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3327, 32rspc 3589 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3416, 33syl 17 . . . . . . . . . . . . 13 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3534imp 405 . . . . . . . . . . . 12 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋))
3635simpld 493 . . . . . . . . . . 11 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → (𝐹𝑗) ∈ ℂ)
3736adantr 479 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ ℂ)
3815, 37subcld 11599 . . . . . . . . 9 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
3938abscld 15413 . . . . . . . 8 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
4039adantlll 716 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
41 simplll 773 . . . . . . . 8 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑋 ∈ ℝ+)
4241rpred 13046 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑋 ∈ ℝ)
4312adantll 712 . . . . . . . 8 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
4443simprd 494 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)
4540, 42, 44ltled 11390 . . . . . 6 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)
4614, 45jca 510 . . . . 5 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
4711, 46ralrimia 3246 . . . 4 (((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
4847ex 411 . . 3 ((𝑋 ∈ ℝ+𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)))
4948reximdva 3158 . 2 (𝑋 ∈ ℝ+ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)))
501, 8, 49sylc 65 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wnfc 2875  wral 3051  wrex 3060   class class class wbr 5141  dom cdm 5670  cfv 6541  (class class class)co 7414  cc 11134  cr 11135   < clt 11276  cle 11277  cmin 11472  cuz 12850  +crp 13004  abscabs 15211  cli 15458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5357  ax-pr 5421  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213  ax-pre-sup 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3958  df-nul 4317  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4991  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-2nd 7990  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-pm 8844  df-en 8961  df-dom 8962  df-sdom 8963  df-sup 9463  df-inf 9464  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-div 11900  df-nn 12241  df-2 12303  df-3 12304  df-n0 12501  df-z 12587  df-uz 12851  df-rp 13005  df-ico 13360  df-fl 13787  df-seq 13997  df-exp 14057  df-cj 15076  df-re 15077  df-im 15078  df-sqrt 15212  df-abs 15213  df-limsup 15445  df-clim 15462  df-rlim 15463
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator