Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvgcaule Structured version   Visualization version   GIF version

Theorem cvgcaule 45459
Description: A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
cvgcaule.1 𝑗𝐹
cvgcaule.2 𝑘𝐹
cvgcaule.3 (𝜑𝑀𝑍)
cvgcaule.4 (𝜑𝐹𝑉)
cvgcaule.5 𝑍 = (ℤ𝑀)
cvgcaule.6 (𝜑𝐹 ∈ dom ⇝ )
cvgcaule.7 (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
cvgcaule (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
Distinct variable groups:   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑗,𝑘)   𝑀(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem cvgcaule
StepHypRef Expression
1 cvgcaule.7 . 2 (𝜑𝑋 ∈ ℝ+)
2 cvgcaule.1 . . 3 𝑗𝐹
3 cvgcaule.2 . . 3 𝑘𝐹
4 cvgcaule.3 . . 3 (𝜑𝑀𝑍)
5 cvgcaule.4 . . 3 (𝜑𝐹𝑉)
6 cvgcaule.5 . . 3 𝑍 = (ℤ𝑀)
7 cvgcaule.6 . . 3 (𝜑𝐹 ∈ dom ⇝ )
82, 3, 4, 5, 6, 7, 1cvgcau 45458 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
9 nfv 1913 . . . . . 6 𝑘(𝑋 ∈ ℝ+𝑗𝑍)
10 nfra1 3269 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)
119, 10nfan 1898 . . . . 5 𝑘((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
12 rspa 3234 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
1312simpld 494 . . . . . . 7 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
1413adantll 714 . . . . . 6 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
1513adantll 714 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
166uzid3 45403 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
17 nfcv 2897 . . . . . . . . . . . . . . . . . 18 𝑘𝑗
183, 17nffv 6896 . . . . . . . . . . . . . . . . 17 𝑘(𝐹𝑗)
1918nfel1 2914 . . . . . . . . . . . . . . . 16 𝑘(𝐹𝑗) ∈ ℂ
20 nfcv 2897 . . . . . . . . . . . . . . . . . 18 𝑘abs
21 nfcv 2897 . . . . . . . . . . . . . . . . . . 19 𝑘
2218, 21, 18nfov 7443 . . . . . . . . . . . . . . . . . 18 𝑘((𝐹𝑗) − (𝐹𝑗))
2320, 22nffv 6896 . . . . . . . . . . . . . . . . 17 𝑘(abs‘((𝐹𝑗) − (𝐹𝑗)))
24 nfcv 2897 . . . . . . . . . . . . . . . . 17 𝑘 <
25 nfcv 2897 . . . . . . . . . . . . . . . . 17 𝑘𝑋
2623, 24, 25nfbr 5170 . . . . . . . . . . . . . . . 16 𝑘(abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋
2719, 26nfan 1898 . . . . . . . . . . . . . . 15 𝑘((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)
28 fveq2 6886 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
2928eleq1d 2818 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
3028fvoveq1d 7435 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑗) − (𝐹𝑗))))
3130breq1d 5133 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋 ↔ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋))
3229, 31anbi12d 632 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ↔ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3327, 32rspc 3593 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3416, 33syl 17 . . . . . . . . . . . . 13 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3534imp 406 . . . . . . . . . . . 12 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋))
3635simpld 494 . . . . . . . . . . 11 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → (𝐹𝑗) ∈ ℂ)
3736adantr 480 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ ℂ)
3815, 37subcld 11602 . . . . . . . . 9 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
3938abscld 15457 . . . . . . . 8 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
4039adantlll 718 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
41 simplll 774 . . . . . . . 8 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑋 ∈ ℝ+)
4241rpred 13059 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑋 ∈ ℝ)
4312adantll 714 . . . . . . . 8 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
4443simprd 495 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)
4540, 42, 44ltled 11391 . . . . . 6 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)
4614, 45jca 511 . . . . 5 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
4711, 46ralrimia 3244 . . . 4 (((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
4847ex 412 . . 3 ((𝑋 ∈ ℝ+𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)))
4948reximdva 3155 . 2 (𝑋 ∈ ℝ+ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)))
501, 8, 49sylc 65 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wnfc 2882  wral 3050  wrex 3059   class class class wbr 5123  dom cdm 5665  cfv 6541  (class class class)co 7413  cc 11135  cr 11136   < clt 11277  cle 11278  cmin 11474  cuz 12860  +crp 13016  abscabs 15255  cli 15502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-ico 13375  df-fl 13814  df-seq 14025  df-exp 14085  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-limsup 15489  df-clim 15506  df-rlim 15507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator