Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvgcaule Structured version   Visualization version   GIF version

Theorem cvgcaule 45490
Description: A convergent function is Cauchy. (Contributed by Glauco Siliprandi, 15-Feb-2025.)
Hypotheses
Ref Expression
cvgcaule.1 𝑗𝐹
cvgcaule.2 𝑘𝐹
cvgcaule.3 (𝜑𝑀𝑍)
cvgcaule.4 (𝜑𝐹𝑉)
cvgcaule.5 𝑍 = (ℤ𝑀)
cvgcaule.6 (𝜑𝐹 ∈ dom ⇝ )
cvgcaule.7 (𝜑𝑋 ∈ ℝ+)
Assertion
Ref Expression
cvgcaule (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
Distinct variable groups:   𝑗,𝑋,𝑘   𝑗,𝑍,𝑘
Allowed substitution hints:   𝜑(𝑗,𝑘)   𝐹(𝑗,𝑘)   𝑀(𝑗,𝑘)   𝑉(𝑗,𝑘)

Proof of Theorem cvgcaule
StepHypRef Expression
1 cvgcaule.7 . 2 (𝜑𝑋 ∈ ℝ+)
2 cvgcaule.1 . . 3 𝑗𝐹
3 cvgcaule.2 . . 3 𝑘𝐹
4 cvgcaule.3 . . 3 (𝜑𝑀𝑍)
5 cvgcaule.4 . . 3 (𝜑𝐹𝑉)
6 cvgcaule.5 . . 3 𝑍 = (ℤ𝑀)
7 cvgcaule.6 . . 3 (𝜑𝐹 ∈ dom ⇝ )
82, 3, 4, 5, 6, 7, 1cvgcau 45489 . 2 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
9 nfv 1914 . . . . . 6 𝑘(𝑋 ∈ ℝ+𝑗𝑍)
10 nfra1 3253 . . . . . 6 𝑘𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)
119, 10nfan 1899 . . . . 5 𝑘((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
12 rspa 3218 . . . . . . . 8 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
1312simpld 494 . . . . . . 7 ((∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
1413adantll 714 . . . . . 6 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
1513adantll 714 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
166uzid3 45434 . . . . . . . . . . . . . 14 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
17 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑘𝑗
183, 17nffv 6836 . . . . . . . . . . . . . . . . 17 𝑘(𝐹𝑗)
1918nfel1 2908 . . . . . . . . . . . . . . . 16 𝑘(𝐹𝑗) ∈ ℂ
20 nfcv 2891 . . . . . . . . . . . . . . . . . 18 𝑘abs
21 nfcv 2891 . . . . . . . . . . . . . . . . . . 19 𝑘
2218, 21, 18nfov 7383 . . . . . . . . . . . . . . . . . 18 𝑘((𝐹𝑗) − (𝐹𝑗))
2320, 22nffv 6836 . . . . . . . . . . . . . . . . 17 𝑘(abs‘((𝐹𝑗) − (𝐹𝑗)))
24 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑘 <
25 nfcv 2891 . . . . . . . . . . . . . . . . 17 𝑘𝑋
2623, 24, 25nfbr 5142 . . . . . . . . . . . . . . . 16 𝑘(abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋
2719, 26nfan 1899 . . . . . . . . . . . . . . 15 𝑘((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)
28 fveq2 6826 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
2928eleq1d 2813 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
3028fvoveq1d 7375 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑗) − (𝐹𝑗))))
3130breq1d 5105 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋 ↔ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋))
3229, 31anbi12d 632 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) ↔ ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3327, 32rspc 3567 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3416, 33syl 17 . . . . . . . . . . . . 13 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋)))
3534imp 406 . . . . . . . . . . . 12 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → ((𝐹𝑗) ∈ ℂ ∧ (abs‘((𝐹𝑗) − (𝐹𝑗))) < 𝑋))
3635simpld 494 . . . . . . . . . . 11 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → (𝐹𝑗) ∈ ℂ)
3736adantr 480 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑗) ∈ ℂ)
3815, 37subcld 11494 . . . . . . . . 9 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
3938abscld 15365 . . . . . . . 8 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
4039adantlll 718 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
41 simplll 774 . . . . . . . 8 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑋 ∈ ℝ+)
4241rpred 12956 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑋 ∈ ℝ)
4312adantll 714 . . . . . . . 8 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋))
4443simprd 495 . . . . . . 7 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)
4540, 42, 44ltled 11283 . . . . . 6 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)
4614, 45jca 511 . . . . 5 ((((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
4711, 46ralrimia 3228 . . . 4 (((𝑋 ∈ ℝ+𝑗𝑍) ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋)) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
4847ex 412 . . 3 ((𝑋 ∈ ℝ+𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)))
4948reximdva 3142 . 2 (𝑋 ∈ ℝ+ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑋) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋)))
501, 8, 49sylc 65 1 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ≤ 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wral 3044  wrex 3053   class class class wbr 5095  dom cdm 5623  cfv 6486  (class class class)co 7353  cc 11026  cr 11027   < clt 11168  cle 11169  cmin 11366  cuz 12754  +crp 12912  abscabs 15160  cli 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-ico 13273  df-fl 13715  df-seq 13928  df-exp 13988  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-limsup 15397  df-clim 15414  df-rlim 15415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator