Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxrre Structured version   Visualization version   GIF version

Theorem climxrre 42179
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxrre.m (𝜑𝑀 ∈ ℤ)
climxrre.z 𝑍 = (ℤ𝑀)
climxrre.f (𝜑𝐹:𝑍⟶ℝ*)
climxrre.a (𝜑𝐴 ∈ ℝ)
climxrre.c (𝜑𝐹𝐴)
Assertion
Ref Expression
climxrre (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem climxrre
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climxrre.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 724 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
3 climxrre.z . . . 4 𝑍 = (ℤ𝑀)
4 climxrre.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 724 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
6 climxrre.c . . . . 5 (𝜑𝐹𝐴)
76ad2antrr 724 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹𝐴)
8 simpr 487 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → +∞ ∈ ℂ)
9 climxrre.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
109recnd 10643 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1110adantr 483 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → 𝐴 ∈ ℂ)
128, 11subcld 10971 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ℂ) → (+∞ − 𝐴) ∈ ℂ)
13 renepnf 10663 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
1413necomd 3061 . . . . . . . . . 10 (𝐴 ∈ ℝ → +∞ ≠ 𝐴)
159, 14syl 17 . . . . . . . . 9 (𝜑 → +∞ ≠ 𝐴)
1615adantr 483 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → +∞ ≠ 𝐴)
178, 11, 16subne0d 10980 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ℂ) → (+∞ − 𝐴) ≠ 0)
1812, 17absrpcld 14784 . . . . . 6 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
1918adantr 483 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
20 simpr 487 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → -∞ ∈ ℂ)
2110adantr 483 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐴 ∈ ℂ)
2220, 21subcld 10971 . . . . . . 7 ((𝜑 ∧ -∞ ∈ ℂ) → (-∞ − 𝐴) ∈ ℂ)
239adantr 483 . . . . . . . . 9 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐴 ∈ ℝ)
24 renemnf 10664 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
2524necomd 3061 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ ≠ 𝐴)
2623, 25syl 17 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → -∞ ≠ 𝐴)
2720, 21, 26subne0d 10980 . . . . . . 7 ((𝜑 ∧ -∞ ∈ ℂ) → (-∞ − 𝐴) ≠ 0)
2822, 27absrpcld 14784 . . . . . 6 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
2928adantlr 713 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
3019, 29ifcld 4484 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ∈ ℝ+)
3119rpred 12406 . . . . . 6 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
3229rpred 12406 . . . . . 6 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
3331, 32min1d 41898 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(+∞ − 𝐴)))
3433adantr 483 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(+∞ − 𝐴)))
3531, 32min2d 41899 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(-∞ − 𝐴)))
3635adantr 483 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(-∞ − 𝐴)))
372, 3, 5, 7, 30, 34, 36climxrrelem 42178 . . 3 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
381ad2antrr 724 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
394ad2antrr 724 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
406ad2antrr 724 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝐹𝐴)
4118adantr 483 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
4218rpred 12406 . . . . . 6 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
4342leidd 11180 . . . . 5 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
4443ad2antrr 724 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
45 pm2.21 123 . . . . . 6 (¬ -∞ ∈ ℂ → (-∞ ∈ ℂ → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴))))
4645imp 409 . . . . 5 ((¬ -∞ ∈ ℂ ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
4746adantll 712 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
4838, 3, 39, 40, 41, 44, 47climxrrelem 42178 . . 3 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
4937, 48pm2.61dan 811 . 2 ((𝜑 ∧ +∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
501ad2antrr 724 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
514ad2antrr 724 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
526ad2antrr 724 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹𝐴)
5328adantlr 713 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
54 pm2.21 123 . . . . . 6 (¬ +∞ ∈ ℂ → (+∞ ∈ ℂ → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴))))
5554imp 409 . . . . 5 ((¬ +∞ ∈ ℂ ∧ +∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
5655ad4ant24 752 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
5728rpred 12406 . . . . . 6 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
5857leidd 11180 . . . . 5 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
5958ad4ant13 749 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
6050, 3, 51, 52, 53, 56, 59climxrrelem 42178 . . 3 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
61 nfv 1915 . . . . . . 7 𝑘((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ)
62 nfv 1915 . . . . . . . 8 𝑘 𝑗𝑍
63 nfra1 3206 . . . . . . . 8 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ
6462, 63nfan 1900 . . . . . . 7 𝑘(𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
6561, 64nfan 1900 . . . . . 6 𝑘(((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
66 simp-4l 781 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
673uztrn2 12237 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6867adantlr 713 . . . . . . . . 9 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6968adantll 712 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
70 simpr 487 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑘𝑍)
714fdmd 6495 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑍)
7271adantr 483 . . . . . . . . 9 ((𝜑𝑘𝑍) → dom 𝐹 = 𝑍)
7370, 72eleqtrrd 2914 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
7466, 69, 73syl2anc 586 . . . . . . 7 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
754ffvelrnda 6823 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
7666, 69, 75syl2anc 586 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
77 rspa 3193 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
7877adantll 712 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
7978adantll 712 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
80 simpllr 774 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ -∞ ∈ ℂ)
81 nelne2 3103 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹𝑘) ≠ -∞)
8279, 80, 81syl2anc 586 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≠ -∞)
83 simp-4r 782 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ +∞ ∈ ℂ)
84 nelne2 3103 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ ¬ +∞ ∈ ℂ) → (𝐹𝑘) ≠ +∞)
8579, 83, 84syl2anc 586 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≠ +∞)
8676, 82, 85xrred 41783 . . . . . . 7 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
8774, 86jca 514 . . . . . 6 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
8865, 87ralrimia 41548 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
894ffund 6490 . . . . . . 7 (𝜑 → Fun 𝐹)
90 ffvresb 6860 . . . . . . 7 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9189, 90syl 17 . . . . . 6 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9291ad3antrrr 728 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9388, 92mpbird 259 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
94 r19.26 3157 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 1))
9594simplbi 500 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
9695ad2antll 727 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1))) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
97 breq2 5042 . . . . . . . . . 10 (𝑥 = 1 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 1))
9897anbi2d 630 . . . . . . . . 9 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1)))
9998rexralbidv 3286 . . . . . . . 8 (𝑥 = 1 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1)))
1003fvexi 6656 . . . . . . . . . . . . 13 𝑍 ∈ V
101100a1i 11 . . . . . . . . . . . 12 (𝜑𝑍 ∈ V)
1024, 101fexd 6962 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
103 eqidd 2821 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
104102, 103clim 14827 . . . . . . . . . 10 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
1056, 104mpbid 234 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
106105simprd 498 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
107 1rp 12368 . . . . . . . . 9 1 ∈ ℝ+
108107a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
10999, 106, 108rspcdva 3601 . . . . . . 7 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1))
11096, 109reximddv 3260 . . . . . 6 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
1113rexuz3 14684 . . . . . . 7 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
1121, 111syl 17 . . . . . 6 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
113110, 112mpbird 259 . . . . 5 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
114113ad2antrr 724 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
11593, 114reximddv 3260 . . 3 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
11660, 115pm2.61dan 811 . 2 ((𝜑 ∧ ¬ +∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
11749, 116pm2.61dan 811 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3006  wral 3125  wrex 3126  Vcvv 3470  ifcif 4439   class class class wbr 5038  dom cdm 5527  cres 5529  Fun wfun 6321  wf 6323  cfv 6327  (class class class)co 7129  cc 10509  cr 10510  1c1 10512  +∞cpnf 10646  -∞cmnf 10647  *cxr 10648   < clt 10649  cle 10650  cmin 10844  cz 11956  cuz 12218  +crp 12364  abscabs 14569  cli 14817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588  ax-pre-sup 10589
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-2nd 7664  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-er 8263  df-en 8484  df-dom 8485  df-sdom 8486  df-sup 8880  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-div 11272  df-nn 11613  df-2 11675  df-3 11676  df-n0 11873  df-z 11957  df-uz 12219  df-rp 12365  df-seq 13350  df-exp 13411  df-cj 14434  df-re 14435  df-im 14436  df-sqrt 14570  df-abs 14571  df-clim 14821
This theorem is referenced by:  xlimclim2  42269
  Copyright terms: Public domain W3C validator