Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxrre Structured version   Visualization version   GIF version

Theorem climxrre 43291
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxrre.m (𝜑𝑀 ∈ ℤ)
climxrre.z 𝑍 = (ℤ𝑀)
climxrre.f (𝜑𝐹:𝑍⟶ℝ*)
climxrre.a (𝜑𝐴 ∈ ℝ)
climxrre.c (𝜑𝐹𝐴)
Assertion
Ref Expression
climxrre (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem climxrre
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climxrre.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 723 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
3 climxrre.z . . . 4 𝑍 = (ℤ𝑀)
4 climxrre.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 723 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
6 climxrre.c . . . . 5 (𝜑𝐹𝐴)
76ad2antrr 723 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹𝐴)
8 simpr 485 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → +∞ ∈ ℂ)
9 climxrre.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
109recnd 11003 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1110adantr 481 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → 𝐴 ∈ ℂ)
128, 11subcld 11332 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ℂ) → (+∞ − 𝐴) ∈ ℂ)
13 renepnf 11023 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
1413necomd 2999 . . . . . . . . . 10 (𝐴 ∈ ℝ → +∞ ≠ 𝐴)
159, 14syl 17 . . . . . . . . 9 (𝜑 → +∞ ≠ 𝐴)
1615adantr 481 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → +∞ ≠ 𝐴)
178, 11, 16subne0d 11341 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ℂ) → (+∞ − 𝐴) ≠ 0)
1812, 17absrpcld 15160 . . . . . 6 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
1918adantr 481 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
20 simpr 485 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → -∞ ∈ ℂ)
2110adantr 481 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐴 ∈ ℂ)
2220, 21subcld 11332 . . . . . . 7 ((𝜑 ∧ -∞ ∈ ℂ) → (-∞ − 𝐴) ∈ ℂ)
239adantr 481 . . . . . . . . 9 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐴 ∈ ℝ)
24 renemnf 11024 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
2524necomd 2999 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ ≠ 𝐴)
2623, 25syl 17 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → -∞ ≠ 𝐴)
2720, 21, 26subne0d 11341 . . . . . . 7 ((𝜑 ∧ -∞ ∈ ℂ) → (-∞ − 𝐴) ≠ 0)
2822, 27absrpcld 15160 . . . . . 6 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
2928adantlr 712 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
3019, 29ifcld 4505 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ∈ ℝ+)
3119rpred 12772 . . . . . 6 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
3229rpred 12772 . . . . . 6 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
3331, 32min1d 43012 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(+∞ − 𝐴)))
3433adantr 481 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(+∞ − 𝐴)))
3531, 32min2d 43013 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(-∞ − 𝐴)))
3635adantr 481 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(-∞ − 𝐴)))
372, 3, 5, 7, 30, 34, 36climxrrelem 43290 . . 3 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
381ad2antrr 723 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
394ad2antrr 723 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
406ad2antrr 723 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝐹𝐴)
4118adantr 481 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
4218rpred 12772 . . . . . 6 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
4342leidd 11541 . . . . 5 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
4443ad2antrr 723 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
45 pm2.21 123 . . . . . 6 (¬ -∞ ∈ ℂ → (-∞ ∈ ℂ → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴))))
4645imp 407 . . . . 5 ((¬ -∞ ∈ ℂ ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
4746adantll 711 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
4838, 3, 39, 40, 41, 44, 47climxrrelem 43290 . . 3 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
4937, 48pm2.61dan 810 . 2 ((𝜑 ∧ +∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
501ad2antrr 723 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
514ad2antrr 723 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
526ad2antrr 723 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹𝐴)
5328adantlr 712 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
54 pm2.21 123 . . . . . 6 (¬ +∞ ∈ ℂ → (+∞ ∈ ℂ → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴))))
5554imp 407 . . . . 5 ((¬ +∞ ∈ ℂ ∧ +∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
5655ad4ant24 751 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
5728rpred 12772 . . . . . 6 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
5857leidd 11541 . . . . 5 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
5958ad4ant13 748 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
6050, 3, 51, 52, 53, 56, 59climxrrelem 43290 . . 3 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
61 nfv 1917 . . . . . . 7 𝑘((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ)
62 nfv 1917 . . . . . . . 8 𝑘 𝑗𝑍
63 nfra1 3144 . . . . . . . 8 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ
6462, 63nfan 1902 . . . . . . 7 𝑘(𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
6561, 64nfan 1902 . . . . . 6 𝑘(((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
66 simp-4l 780 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
673uztrn2 12601 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6867adantlr 712 . . . . . . . . 9 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6968adantll 711 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
70 simpr 485 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑘𝑍)
714fdmd 6611 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑍)
7271adantr 481 . . . . . . . . 9 ((𝜑𝑘𝑍) → dom 𝐹 = 𝑍)
7370, 72eleqtrrd 2842 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
7466, 69, 73syl2anc 584 . . . . . . 7 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
754ffvelrnda 6961 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
7666, 69, 75syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
77 rspa 3132 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
7877adantll 711 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
7978adantll 711 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
80 simpllr 773 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ -∞ ∈ ℂ)
81 nelne2 3042 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹𝑘) ≠ -∞)
8279, 80, 81syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≠ -∞)
83 simp-4r 781 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ +∞ ∈ ℂ)
84 nelne2 3042 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ ¬ +∞ ∈ ℂ) → (𝐹𝑘) ≠ +∞)
8579, 83, 84syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≠ +∞)
8676, 82, 85xrred 42904 . . . . . . 7 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
8774, 86jca 512 . . . . . 6 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
8865, 87ralrimia 3430 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
894ffund 6604 . . . . . . 7 (𝜑 → Fun 𝐹)
90 ffvresb 6998 . . . . . . 7 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9189, 90syl 17 . . . . . 6 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9291ad3antrrr 727 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9388, 92mpbird 256 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
94 r19.26 3095 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 1))
9594simplbi 498 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
9695ad2antll 726 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1))) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
97 breq2 5078 . . . . . . . . . 10 (𝑥 = 1 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 1))
9897anbi2d 629 . . . . . . . . 9 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1)))
9998rexralbidv 3230 . . . . . . . 8 (𝑥 = 1 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1)))
1003fvexi 6788 . . . . . . . . . . . . 13 𝑍 ∈ V
101100a1i 11 . . . . . . . . . . . 12 (𝜑𝑍 ∈ V)
1024, 101fexd 7103 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
103 eqidd 2739 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
104102, 103clim 15203 . . . . . . . . . 10 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
1056, 104mpbid 231 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
106105simprd 496 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
107 1rp 12734 . . . . . . . . 9 1 ∈ ℝ+
108107a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
10999, 106, 108rspcdva 3562 . . . . . . 7 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1))
11096, 109reximddv 3204 . . . . . 6 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
1113rexuz3 15060 . . . . . . 7 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
1121, 111syl 17 . . . . . 6 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
113110, 112mpbird 256 . . . . 5 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
114113ad2antrr 723 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
11593, 114reximddv 3204 . . 3 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
11660, 115pm2.61dan 810 . 2 ((𝜑 ∧ ¬ +∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
11749, 116pm2.61dan 810 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  ifcif 4459   class class class wbr 5074  dom cdm 5589  cres 5591  Fun wfun 6427  wf 6429  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  1c1 10872  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  cmin 11205  cz 12319  cuz 12582  +crp 12730  abscabs 14945  cli 15193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197
This theorem is referenced by:  xlimclim2  43381
  Copyright terms: Public domain W3C validator