Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxrre Structured version   Visualization version   GIF version

Theorem climxrre 45748
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxrre.m (𝜑𝑀 ∈ ℤ)
climxrre.z 𝑍 = (ℤ𝑀)
climxrre.f (𝜑𝐹:𝑍⟶ℝ*)
climxrre.a (𝜑𝐴 ∈ ℝ)
climxrre.c (𝜑𝐹𝐴)
Assertion
Ref Expression
climxrre (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem climxrre
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climxrre.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
3 climxrre.z . . . 4 𝑍 = (ℤ𝑀)
4 climxrre.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
6 climxrre.c . . . . 5 (𝜑𝐹𝐴)
76ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹𝐴)
8 simpr 484 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → +∞ ∈ ℂ)
9 climxrre.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
109recnd 11202 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1110adantr 480 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → 𝐴 ∈ ℂ)
128, 11subcld 11533 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ℂ) → (+∞ − 𝐴) ∈ ℂ)
13 renepnf 11222 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
1413necomd 2980 . . . . . . . . . 10 (𝐴 ∈ ℝ → +∞ ≠ 𝐴)
159, 14syl 17 . . . . . . . . 9 (𝜑 → +∞ ≠ 𝐴)
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → +∞ ≠ 𝐴)
178, 11, 16subne0d 11542 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ℂ) → (+∞ − 𝐴) ≠ 0)
1812, 17absrpcld 15417 . . . . . 6 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
1918adantr 480 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
20 simpr 484 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → -∞ ∈ ℂ)
2110adantr 480 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐴 ∈ ℂ)
2220, 21subcld 11533 . . . . . . 7 ((𝜑 ∧ -∞ ∈ ℂ) → (-∞ − 𝐴) ∈ ℂ)
239adantr 480 . . . . . . . . 9 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐴 ∈ ℝ)
24 renemnf 11223 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
2524necomd 2980 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ ≠ 𝐴)
2623, 25syl 17 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → -∞ ≠ 𝐴)
2720, 21, 26subne0d 11542 . . . . . . 7 ((𝜑 ∧ -∞ ∈ ℂ) → (-∞ − 𝐴) ≠ 0)
2822, 27absrpcld 15417 . . . . . 6 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
2928adantlr 715 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
3019, 29ifcld 4535 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ∈ ℝ+)
3119rpred 12995 . . . . . 6 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
3229rpred 12995 . . . . . 6 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
3331, 32min1d 45468 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(+∞ − 𝐴)))
3433adantr 480 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(+∞ − 𝐴)))
3531, 32min2d 45469 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(-∞ − 𝐴)))
3635adantr 480 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(-∞ − 𝐴)))
372, 3, 5, 7, 30, 34, 36climxrrelem 45747 . . 3 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
381ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
394ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
406ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝐹𝐴)
4118adantr 480 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
4218rpred 12995 . . . . . 6 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
4342leidd 11744 . . . . 5 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
4443ad2antrr 726 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
45 pm2.21 123 . . . . . 6 (¬ -∞ ∈ ℂ → (-∞ ∈ ℂ → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴))))
4645imp 406 . . . . 5 ((¬ -∞ ∈ ℂ ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
4746adantll 714 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
4838, 3, 39, 40, 41, 44, 47climxrrelem 45747 . . 3 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
4937, 48pm2.61dan 812 . 2 ((𝜑 ∧ +∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
501ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
514ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
526ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹𝐴)
5328adantlr 715 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
54 pm2.21 123 . . . . . 6 (¬ +∞ ∈ ℂ → (+∞ ∈ ℂ → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴))))
5554imp 406 . . . . 5 ((¬ +∞ ∈ ℂ ∧ +∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
5655ad4ant24 754 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
5728rpred 12995 . . . . . 6 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
5857leidd 11744 . . . . 5 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
5958ad4ant13 751 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
6050, 3, 51, 52, 53, 56, 59climxrrelem 45747 . . 3 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
61 nfv 1914 . . . . . . 7 𝑘((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ)
62 nfv 1914 . . . . . . . 8 𝑘 𝑗𝑍
63 nfra1 3261 . . . . . . . 8 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ
6462, 63nfan 1899 . . . . . . 7 𝑘(𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
6561, 64nfan 1899 . . . . . 6 𝑘(((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
66 simp-4l 782 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
673uztrn2 12812 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6867adantlr 715 . . . . . . . . 9 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6968adantll 714 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
70 simpr 484 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑘𝑍)
714fdmd 6698 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑍)
7271adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → dom 𝐹 = 𝑍)
7370, 72eleqtrrd 2831 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
7466, 69, 73syl2anc 584 . . . . . . 7 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
754ffvelcdmda 7056 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
7666, 69, 75syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
77 rspa 3226 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
7877adantll 714 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
7978adantll 714 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
80 simpllr 775 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ -∞ ∈ ℂ)
81 nelne2 3023 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹𝑘) ≠ -∞)
8279, 80, 81syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≠ -∞)
83 simp-4r 783 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ +∞ ∈ ℂ)
84 nelne2 3023 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ ¬ +∞ ∈ ℂ) → (𝐹𝑘) ≠ +∞)
8579, 83, 84syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≠ +∞)
8676, 82, 85xrred 45361 . . . . . . 7 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
8774, 86jca 511 . . . . . 6 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
8865, 87ralrimia 3236 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
894ffund 6692 . . . . . . 7 (𝜑 → Fun 𝐹)
90 ffvresb 7097 . . . . . . 7 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9189, 90syl 17 . . . . . 6 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9291ad3antrrr 730 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9388, 92mpbird 257 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
94 r19.26 3091 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 1))
9594simplbi 497 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
9695ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1))) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
97 breq2 5111 . . . . . . . . . 10 (𝑥 = 1 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 1))
9897anbi2d 630 . . . . . . . . 9 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1)))
9998rexralbidv 3203 . . . . . . . 8 (𝑥 = 1 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1)))
1003fvexi 6872 . . . . . . . . . . . . 13 𝑍 ∈ V
101100a1i 11 . . . . . . . . . . . 12 (𝜑𝑍 ∈ V)
1024, 101fexd 7201 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
103 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
104102, 103clim 15460 . . . . . . . . . 10 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
1056, 104mpbid 232 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
106105simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
107 1rp 12955 . . . . . . . . 9 1 ∈ ℝ+
108107a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
10999, 106, 108rspcdva 3589 . . . . . . 7 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1))
11096, 109reximddv 3149 . . . . . 6 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
1113rexuz3 15315 . . . . . . 7 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
1121, 111syl 17 . . . . . 6 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
113110, 112mpbird 257 . . . . 5 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
114113ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
11593, 114reximddv 3149 . . 3 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
11660, 115pm2.61dan 812 . 2 ((𝜑 ∧ ¬ +∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
11749, 116pm2.61dan 812 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  ifcif 4488   class class class wbr 5107  dom cdm 5638  cres 5640  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  1c1 11069  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207   < clt 11208  cle 11209  cmin 11405  cz 12529  cuz 12793  +crp 12951  abscabs 15200  cli 15450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454
This theorem is referenced by:  xlimclim2  45838
  Copyright terms: Public domain W3C validator