Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climxrre Structured version   Visualization version   GIF version

Theorem climxrre 45755
Description: If a sequence ranging over the extended reals converges w.r.t. the standard topology on the complex numbers, then there exists an upper set of the integers over which the function is real-valued (the weaker hypothesis 𝐹 ∈ dom ⇝ is probably not enough, since in principle we could have +∞ ∈ ℂ and -∞ ∈ ℂ). (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Hypotheses
Ref Expression
climxrre.m (𝜑𝑀 ∈ ℤ)
climxrre.z 𝑍 = (ℤ𝑀)
climxrre.f (𝜑𝐹:𝑍⟶ℝ*)
climxrre.a (𝜑𝐴 ∈ ℝ)
climxrre.c (𝜑𝐹𝐴)
Assertion
Ref Expression
climxrre (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Distinct variable groups:   𝐴,𝑗   𝑗,𝐹   𝑗,𝑀   𝑗,𝑍   𝜑,𝑗

Proof of Theorem climxrre
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climxrre.m . . . . 5 (𝜑𝑀 ∈ ℤ)
21ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
3 climxrre.z . . . 4 𝑍 = (ℤ𝑀)
4 climxrre.f . . . . 5 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
6 climxrre.c . . . . 5 (𝜑𝐹𝐴)
76ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹𝐴)
8 simpr 484 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → +∞ ∈ ℂ)
9 climxrre.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
109recnd 11209 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1110adantr 480 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → 𝐴 ∈ ℂ)
128, 11subcld 11540 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ℂ) → (+∞ − 𝐴) ∈ ℂ)
13 renepnf 11229 . . . . . . . . . . 11 (𝐴 ∈ ℝ → 𝐴 ≠ +∞)
1413necomd 2981 . . . . . . . . . 10 (𝐴 ∈ ℝ → +∞ ≠ 𝐴)
159, 14syl 17 . . . . . . . . 9 (𝜑 → +∞ ≠ 𝐴)
1615adantr 480 . . . . . . . 8 ((𝜑 ∧ +∞ ∈ ℂ) → +∞ ≠ 𝐴)
178, 11, 16subne0d 11549 . . . . . . 7 ((𝜑 ∧ +∞ ∈ ℂ) → (+∞ − 𝐴) ≠ 0)
1812, 17absrpcld 15424 . . . . . 6 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
1918adantr 480 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
20 simpr 484 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → -∞ ∈ ℂ)
2110adantr 480 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐴 ∈ ℂ)
2220, 21subcld 11540 . . . . . . 7 ((𝜑 ∧ -∞ ∈ ℂ) → (-∞ − 𝐴) ∈ ℂ)
239adantr 480 . . . . . . . . 9 ((𝜑 ∧ -∞ ∈ ℂ) → 𝐴 ∈ ℝ)
24 renemnf 11230 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 ≠ -∞)
2524necomd 2981 . . . . . . . . 9 (𝐴 ∈ ℝ → -∞ ≠ 𝐴)
2623, 25syl 17 . . . . . . . 8 ((𝜑 ∧ -∞ ∈ ℂ) → -∞ ≠ 𝐴)
2720, 21, 26subne0d 11549 . . . . . . 7 ((𝜑 ∧ -∞ ∈ ℂ) → (-∞ − 𝐴) ≠ 0)
2822, 27absrpcld 15424 . . . . . 6 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
2928adantlr 715 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
3019, 29ifcld 4538 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ∈ ℝ+)
3119rpred 13002 . . . . . 6 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
3229rpred 13002 . . . . . 6 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
3331, 32min1d 45475 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(+∞ − 𝐴)))
3433adantr 480 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(+∞ − 𝐴)))
3531, 32min2d 45476 . . . . 5 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(-∞ − 𝐴)))
3635adantr 480 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → if((abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)), (abs‘(+∞ − 𝐴)), (abs‘(-∞ − 𝐴))) ≤ (abs‘(-∞ − 𝐴)))
372, 3, 5, 7, 30, 34, 36climxrrelem 45754 . . 3 (((𝜑 ∧ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
381ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
394ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
406ad2antrr 726 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → 𝐹𝐴)
4118adantr 480 . . . 4 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ+)
4218rpred 13002 . . . . . 6 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ∈ ℝ)
4342leidd 11751 . . . . 5 ((𝜑 ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
4443ad2antrr 726 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
45 pm2.21 123 . . . . . 6 (¬ -∞ ∈ ℂ → (-∞ ∈ ℂ → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴))))
4645imp 406 . . . . 5 ((¬ -∞ ∈ ℂ ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
4746adantll 714 . . . 4 ((((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(+∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
4838, 3, 39, 40, 41, 44, 47climxrrelem 45754 . . 3 (((𝜑 ∧ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
4937, 48pm2.61dan 812 . 2 ((𝜑 ∧ +∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
501ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝑀 ∈ ℤ)
514ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹:𝑍⟶ℝ*)
526ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → 𝐹𝐴)
5328adantlr 715 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ+)
54 pm2.21 123 . . . . . 6 (¬ +∞ ∈ ℂ → (+∞ ∈ ℂ → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴))))
5554imp 406 . . . . 5 ((¬ +∞ ∈ ℂ ∧ +∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
5655ad4ant24 754 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ +∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(+∞ − 𝐴)))
5728rpred 13002 . . . . . 6 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ∈ ℝ)
5857leidd 11751 . . . . 5 ((𝜑 ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
5958ad4ant13 751 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → (abs‘(-∞ − 𝐴)) ≤ (abs‘(-∞ − 𝐴)))
6050, 3, 51, 52, 53, 56, 59climxrrelem 45754 . . 3 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
61 nfv 1914 . . . . . . 7 𝑘((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ)
62 nfv 1914 . . . . . . . 8 𝑘 𝑗𝑍
63 nfra1 3262 . . . . . . . 8 𝑘𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ
6462, 63nfan 1899 . . . . . . 7 𝑘(𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
6561, 64nfan 1899 . . . . . 6 𝑘(((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
66 simp-4l 782 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝜑)
673uztrn2 12819 . . . . . . . . . 10 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6867adantlr 715 . . . . . . . . 9 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
6968adantll 714 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
70 simpr 484 . . . . . . . . 9 ((𝜑𝑘𝑍) → 𝑘𝑍)
714fdmd 6701 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑍)
7271adantr 480 . . . . . . . . 9 ((𝜑𝑘𝑍) → dom 𝐹 = 𝑍)
7370, 72eleqtrrd 2832 . . . . . . . 8 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
7466, 69, 73syl2anc 584 . . . . . . 7 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → 𝑘 ∈ dom 𝐹)
754ffvelcdmda 7059 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ*)
7666, 69, 75syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ*)
77 rspa 3227 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
7877adantll 714 . . . . . . . . . 10 (((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
7978adantll 714 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℂ)
80 simpllr 775 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ -∞ ∈ ℂ)
81 nelne2 3024 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ ¬ -∞ ∈ ℂ) → (𝐹𝑘) ≠ -∞)
8279, 80, 81syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≠ -∞)
83 simp-4r 783 . . . . . . . . 9 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → ¬ +∞ ∈ ℂ)
84 nelne2 3024 . . . . . . . . 9 (((𝐹𝑘) ∈ ℂ ∧ ¬ +∞ ∈ ℂ) → (𝐹𝑘) ≠ +∞)
8579, 83, 84syl2anc 584 . . . . . . . 8 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ≠ +∞)
8676, 82, 85xrred 45368 . . . . . . 7 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐹𝑘) ∈ ℝ)
8774, 86jca 511 . . . . . 6 (((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
8865, 87ralrimia 3237 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ))
894ffund 6695 . . . . . . 7 (𝜑 → Fun 𝐹)
90 ffvresb 7100 . . . . . . 7 (Fun 𝐹 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9189, 90syl 17 . . . . . 6 (𝜑 → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9291ad3antrrr 730 . . . . 5 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → ((𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ ℝ)))
9388, 92mpbird 257 . . . 4 ((((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
94 r19.26 3092 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1) ↔ (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − 𝐴)) < 1))
9594simplbi 497 . . . . . . . 8 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
9695ad2antll 729 . . . . . . 7 ((𝜑 ∧ (𝑗 ∈ ℤ ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1))) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
97 breq2 5114 . . . . . . . . . 10 (𝑥 = 1 → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 1))
9897anbi2d 630 . . . . . . . . 9 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1)))
9998rexralbidv 3204 . . . . . . . 8 (𝑥 = 1 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1)))
1003fvexi 6875 . . . . . . . . . . . . 13 𝑍 ∈ V
101100a1i 11 . . . . . . . . . . . 12 (𝜑𝑍 ∈ V)
1024, 101fexd 7204 . . . . . . . . . . 11 (𝜑𝐹 ∈ V)
103 eqidd 2731 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = (𝐹𝑘))
104102, 103clim 15467 . . . . . . . . . 10 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
1056, 104mpbid 232 . . . . . . . . 9 (𝜑 → (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
106105simprd 495 . . . . . . . 8 (𝜑 → ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
107 1rp 12962 . . . . . . . . 9 1 ∈ ℝ+
108107a1i 11 . . . . . . . 8 (𝜑 → 1 ∈ ℝ+)
10999, 106, 108rspcdva 3592 . . . . . . 7 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 1))
11096, 109reximddv 3150 . . . . . 6 (𝜑 → ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
1113rexuz3 15322 . . . . . . 7 (𝑀 ∈ ℤ → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
1121, 111syl 17 . . . . . 6 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ))
113110, 112mpbird 257 . . . . 5 (𝜑 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
114113ad2antrr 726 . . . 4 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
11593, 114reximddv 3150 . . 3 (((𝜑 ∧ ¬ +∞ ∈ ℂ) ∧ ¬ -∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
11660, 115pm2.61dan 812 . 2 ((𝜑 ∧ ¬ +∞ ∈ ℂ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
11749, 116pm2.61dan 812 1 (𝜑 → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  ifcif 4491   class class class wbr 5110  dom cdm 5641  cres 5643  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076  +∞cpnf 11212  -∞cmnf 11213  *cxr 11214   < clt 11215  cle 11216  cmin 11412  cz 12536  cuz 12800  +crp 12958  abscabs 15207  cli 15457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461
This theorem is referenced by:  xlimclim2  45845
  Copyright terms: Public domain W3C validator