Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssd Structured version   Visualization version   GIF version

Theorem rnmptssd 45184
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
rnmptssd.1 𝑥𝜑
rnmptssd.2 𝐹 = (𝑥𝐴𝐵)
rnmptssd.3 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
rnmptssd (𝜑 → ran 𝐹𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem rnmptssd
StepHypRef Expression
1 rnmptssd.1 . . 3 𝑥𝜑
2 rnmptssd.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
31, 2ralrimia 3228 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
4 rnmptssd.2 . . 3 𝐹 = (𝑥𝐴𝐵)
54rnmptss 7057 . 2 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
63, 5syl 17 1 (𝜑 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3044  wss 3903  cmpt 5173  ran crn 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486
This theorem is referenced by:  infnsuprnmpt  45238  suprclrnmpt  45239  suprubrnmpt2  45240  suprubrnmpt  45241  fisupclrnmpt  45387  supxrleubrnmpt  45395  infxrlbrnmpt2  45399  supxrrernmpt  45410  suprleubrnmpt  45411  infrnmptle  45412  infxrunb3rnmpt  45417  supxrre3rnmpt  45418  supminfrnmpt  45434  infxrrnmptcl  45436  infxrgelbrnmpt  45443  infrpgernmpt  45454  supminfxrrnmpt  45460  liminfcl  45754  fourierdlem31  46129  fourierdlem53  46150  sge0xaddlem2  46425  sge0reuz  46438  sge0reuzb  46439  meadjiun  46457  hoidmvlelem2  46587  iunhoiioolem  46666  vonioolem1  46671  smflimsuplem4  46814
  Copyright terms: Public domain W3C validator