| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssd | Structured version Visualization version GIF version | ||
| Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| rnmptssd.1 | ⊢ Ⅎ𝑥𝜑 |
| rnmptssd.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| rnmptssd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| rnmptssd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptssd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rnmptssd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 3 | 1, 2 | ralrimia 3236 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 4 | rnmptssd.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 4 | rnmptss 7095 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| 6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 ↦ cmpt 5188 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: infnsuprnmpt 45244 suprclrnmpt 45245 suprubrnmpt2 45246 suprubrnmpt 45247 fisupclrnmpt 45394 supxrleubrnmpt 45402 infxrlbrnmpt2 45406 supxrrernmpt 45417 suprleubrnmpt 45418 infrnmptle 45419 infxrunb3rnmpt 45424 supxrre3rnmpt 45425 supminfrnmpt 45441 infxrrnmptcl 45443 infxrgelbrnmpt 45450 infrpgernmpt 45461 supminfxrrnmpt 45467 liminfcl 45761 fourierdlem31 46136 fourierdlem53 46157 sge0xaddlem2 46432 sge0reuz 46445 sge0reuzb 46446 meadjiun 46464 hoidmvlelem2 46594 iunhoiioolem 46673 vonioolem1 46678 smflimsuplem4 46821 |
| Copyright terms: Public domain | W3C validator |