![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssd | Structured version Visualization version GIF version |
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
rnmptssd.1 | ⊢ Ⅎ𝑥𝜑 |
rnmptssd.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptssd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
rnmptssd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptssd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptssd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
3 | 1, 2 | ralrimia 3250 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
4 | rnmptssd.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | rnmptss 7127 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 ∀wral 3056 ⊆ wss 3944 ↦ cmpt 5225 ran crn 5673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-fun 6544 df-fn 6545 df-f 6546 |
This theorem is referenced by: infnsuprnmpt 44549 suprclrnmpt 44550 suprubrnmpt2 44551 suprubrnmpt 44552 fisupclrnmpt 44703 supxrleubrnmpt 44711 infxrlbrnmpt2 44715 supxrrernmpt 44726 suprleubrnmpt 44727 infrnmptle 44728 infxrunb3rnmpt 44733 supxrre3rnmpt 44734 supminfrnmpt 44750 infxrrnmptcl 44752 infxrgelbrnmpt 44759 infrpgernmpt 44770 supminfxrrnmpt 44776 liminfcl 45074 fourierdlem31 45449 fourierdlem53 45470 sge0xaddlem2 45745 sge0reuz 45758 sge0reuzb 45759 meadjiun 45777 hoidmvlelem2 45907 iunhoiioolem 45986 vonioolem1 45991 smflimsuplem4 46134 |
Copyright terms: Public domain | W3C validator |