Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnmptssd Structured version   Visualization version   GIF version

Theorem rnmptssd 42257
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
rnmptssd.1 𝑥𝜑
rnmptssd.2 𝐹 = (𝑥𝐴𝐵)
rnmptssd.3 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
rnmptssd (𝜑 → ran 𝐹𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem rnmptssd
StepHypRef Expression
1 rnmptssd.1 . . 3 𝑥𝜑
2 rnmptssd.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
31, 2ralrimia 3395 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
4 rnmptssd.2 . . 3 𝐹 = (𝑥𝐴𝐵)
54rnmptss 6890 . 2 (∀𝑥𝐴 𝐵𝐶 → ran 𝐹𝐶)
63, 5syl 17 1 (𝜑 → ran 𝐹𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wnf 1790  wcel 2113  wral 3053  wss 3841  cmpt 5107  ran crn 5520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5164  ax-nul 5171  ax-pr 5293
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3399  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-nul 4210  df-if 4412  df-sn 4514  df-pr 4516  df-op 4520  df-br 5028  df-opab 5090  df-mpt 5108  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-fun 6335  df-fn 6336  df-f 6337
This theorem is referenced by:  infnsuprnmpt  42317  suprclrnmpt  42318  suprubrnmpt2  42319  suprubrnmpt  42320  fisupclrnmpt  42460  supxrleubrnmpt  42468  infxrlbrnmpt2  42472  supxrrernmpt  42483  suprleubrnmpt  42484  infrnmptle  42485  infxrunb3rnmpt  42490  supxrre3rnmpt  42491  supminfrnmpt  42507  infxrrnmptcl  42510  infxrgelbrnmpt  42518  infrpgernmpt  42529  supminfxrrnmpt  42535  liminfcl  42830  fourierdlem31  43205  fourierdlem53  43226  sge0xaddlem2  43498  sge0reuz  43511  sge0reuzb  43512  meadjiun  43530  hoidmvlelem2  43660  iunhoiioolem  43739  vonioolem1  43744  smflimsuplem4  43879
  Copyright terms: Public domain W3C validator