| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssd | Structured version Visualization version GIF version | ||
| Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| rnmptssd.1 | ⊢ Ⅎ𝑥𝜑 |
| rnmptssd.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| rnmptssd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| rnmptssd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnmptssd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rnmptssd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 3 | 1, 2 | ralrimia 3237 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
| 4 | rnmptssd.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 5 | 4 | rnmptss 7098 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
| 6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 ↦ cmpt 5191 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: infnsuprnmpt 45251 suprclrnmpt 45252 suprubrnmpt2 45253 suprubrnmpt 45254 fisupclrnmpt 45401 supxrleubrnmpt 45409 infxrlbrnmpt2 45413 supxrrernmpt 45424 suprleubrnmpt 45425 infrnmptle 45426 infxrunb3rnmpt 45431 supxrre3rnmpt 45432 supminfrnmpt 45448 infxrrnmptcl 45450 infxrgelbrnmpt 45457 infrpgernmpt 45468 supminfxrrnmpt 45474 liminfcl 45768 fourierdlem31 46143 fourierdlem53 46164 sge0xaddlem2 46439 sge0reuz 46452 sge0reuzb 46453 meadjiun 46471 hoidmvlelem2 46601 iunhoiioolem 46680 vonioolem1 46685 smflimsuplem4 46828 |
| Copyright terms: Public domain | W3C validator |