![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssd | Structured version Visualization version GIF version |
Description: The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
rnmptssd.1 | ⊢ Ⅎ𝑥𝜑 |
rnmptssd.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptssd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
rnmptssd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptssd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptssd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
3 | 1, 2 | ralrimia 3264 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
4 | rnmptssd.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | rnmptss 7157 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 ↦ cmpt 5249 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: infnsuprnmpt 45159 suprclrnmpt 45160 suprubrnmpt2 45161 suprubrnmpt 45162 fisupclrnmpt 45313 supxrleubrnmpt 45321 infxrlbrnmpt2 45325 supxrrernmpt 45336 suprleubrnmpt 45337 infrnmptle 45338 infxrunb3rnmpt 45343 supxrre3rnmpt 45344 supminfrnmpt 45360 infxrrnmptcl 45362 infxrgelbrnmpt 45369 infrpgernmpt 45380 supminfxrrnmpt 45386 liminfcl 45684 fourierdlem31 46059 fourierdlem53 46080 sge0xaddlem2 46355 sge0reuz 46368 sge0reuzb 46369 meadjiun 46387 hoidmvlelem2 46517 iunhoiioolem 46596 vonioolem1 46601 smflimsuplem4 46744 |
Copyright terms: Public domain | W3C validator |