Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnmptssd | Structured version Visualization version GIF version |
Description: The range of an operation given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
rnmptssd.1 | ⊢ Ⅎ𝑥𝜑 |
rnmptssd.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rnmptssd.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
Ref | Expression |
---|---|
rnmptssd | ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnmptssd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rnmptssd.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
3 | 1, 2 | ralrimia 3395 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) |
4 | rnmptssd.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
5 | 4 | rnmptss 6890 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ran 𝐹 ⊆ 𝐶) |
6 | 3, 5 | syl 17 | 1 ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 Ⅎwnf 1790 ∈ wcel 2113 ∀wral 3053 ⊆ wss 3841 ↦ cmpt 5107 ran crn 5520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-fun 6335 df-fn 6336 df-f 6337 |
This theorem is referenced by: infnsuprnmpt 42317 suprclrnmpt 42318 suprubrnmpt2 42319 suprubrnmpt 42320 fisupclrnmpt 42460 supxrleubrnmpt 42468 infxrlbrnmpt2 42472 supxrrernmpt 42483 suprleubrnmpt 42484 infrnmptle 42485 infxrunb3rnmpt 42490 supxrre3rnmpt 42491 supminfrnmpt 42507 infxrrnmptcl 42510 infxrgelbrnmpt 42518 infrpgernmpt 42529 supminfxrrnmpt 42535 liminfcl 42830 fourierdlem31 43205 fourierdlem53 43226 sge0xaddlem2 43498 sge0reuz 43511 sge0reuzb 43512 meadjiun 43530 hoidmvlelem2 43660 iunhoiioolem 43739 vonioolem1 43744 smflimsuplem4 43879 |
Copyright terms: Public domain | W3C validator |