Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinf2 Structured version   Visualization version   GIF version

Theorem infleinf2 45452
Description: If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infleinf2.x 𝑥𝜑
infleinf2.p 𝑦𝜑
infleinf2.a (𝜑𝐴 ⊆ ℝ*)
infleinf2.b (𝜑𝐵 ⊆ ℝ*)
infleinf2.y ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑦𝑥)
Assertion
Ref Expression
infleinf2 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem infleinf2
StepHypRef Expression
1 infleinf2.x . . 3 𝑥𝜑
2 infleinf2.y . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑦𝑥)
3 infleinf2.p . . . . . 6 𝑦𝜑
4 nfv 1915 . . . . . 6 𝑦 𝑥𝐵
53, 4nfan 1900 . . . . 5 𝑦(𝜑𝑥𝐵)
6 nfv 1915 . . . . 5 𝑦inf(𝐴, ℝ*, < ) ≤ 𝑥
7 infleinf2.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ*)
87infxrcld 45427 . . . . . . . . 9 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
983ad2ant1 1133 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
1093adant1r 1178 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
117sselda 3929 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
12113adant3 1132 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → 𝑦 ∈ ℝ*)
13123adant1r 1178 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑦 ∈ ℝ*)
14 infleinf2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
1514sselda 3929 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥 ∈ ℝ*)
16153ad2ant1 1133 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑥 ∈ ℝ*)
177adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
18 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
19 infxrlb 13229 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑦𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
2017, 18, 19syl2anc 584 . . . . . . . . 9 ((𝜑𝑦𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
21203adant3 1132 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
22213adant1r 1178 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
23 simp3 1138 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑦𝑥)
2410, 13, 16, 22, 23xrletrd 13056 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
25243exp 1119 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐴 → (𝑦𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥)))
265, 6, 25rexlimd 3239 . . . 4 ((𝜑𝑥𝐵) → (∃𝑦𝐴 𝑦𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥))
272, 26mpd 15 . . 3 ((𝜑𝑥𝐵) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
281, 27ralrimia 3231 . 2 (𝜑 → ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥)
29 infxrgelb 13230 . . 3 ((𝐵 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3014, 8, 29syl2anc 584 . 2 (𝜑 → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3128, 30mpbird 257 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wnf 1784  wcel 2111  wral 3047  wrex 3056  wss 3897   class class class wbr 5086  infcinf 9320  *cxr 11140   < clt 11141  cle 11142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342
This theorem is referenced by:  infrnmptle  45461  infxrpnf  45484
  Copyright terms: Public domain W3C validator