Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinf2 Structured version   Visualization version   GIF version

Theorem infleinf2 42066
 Description: If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infleinf2.x 𝑥𝜑
infleinf2.p 𝑦𝜑
infleinf2.a (𝜑𝐴 ⊆ ℝ*)
infleinf2.b (𝜑𝐵 ⊆ ℝ*)
infleinf2.y ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑦𝑥)
Assertion
Ref Expression
infleinf2 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem infleinf2
StepHypRef Expression
1 infleinf2.x . . 3 𝑥𝜑
2 infleinf2.y . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑦𝑥)
3 infleinf2.p . . . . . 6 𝑦𝜑
4 nfv 1915 . . . . . 6 𝑦 𝑥𝐵
53, 4nfan 1900 . . . . 5 𝑦(𝜑𝑥𝐵)
6 nfv 1915 . . . . 5 𝑦inf(𝐴, ℝ*, < ) ≤ 𝑥
7 infleinf2.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ*)
87infxrcld 42040 . . . . . . . . 9 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
983ad2ant1 1130 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
1093adant1r 1174 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
117sselda 3915 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
12113adant3 1129 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → 𝑦 ∈ ℝ*)
13123adant1r 1174 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑦 ∈ ℝ*)
14 infleinf2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
1514sselda 3915 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥 ∈ ℝ*)
16153ad2ant1 1130 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑥 ∈ ℝ*)
177adantr 484 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
18 simpr 488 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
19 infxrlb 12717 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑦𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
2017, 18, 19syl2anc 587 . . . . . . . . 9 ((𝜑𝑦𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
21203adant3 1129 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
22213adant1r 1174 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
23 simp3 1135 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑦𝑥)
2410, 13, 16, 22, 23xrletrd 12545 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
25243exp 1116 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐴 → (𝑦𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥)))
265, 6, 25rexlimd 3276 . . . 4 ((𝜑𝑥𝐵) → (∃𝑦𝐴 𝑦𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥))
272, 26mpd 15 . . 3 ((𝜑𝑥𝐵) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
281, 27ralrimia 41782 . 2 (𝜑 → ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥)
29 infxrgelb 12718 . . 3 ((𝐵 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3014, 8, 29syl2anc 587 . 2 (𝜑 → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3128, 30mpbird 260 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084  Ⅎwnf 1785   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   ⊆ wss 3881   class class class wbr 5030  infcinf 8891  ℝ*cxr 10665   < clt 10666   ≤ cle 10667 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8274  df-en 8495  df-dom 8496  df-sdom 8497  df-sup 8892  df-inf 8893  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864 This theorem is referenced by:  infrnmptle  42075  infxrpnf  42099
 Copyright terms: Public domain W3C validator