Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinf2 Structured version   Visualization version   GIF version

Theorem infleinf2 42844
Description: If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infleinf2.x 𝑥𝜑
infleinf2.p 𝑦𝜑
infleinf2.a (𝜑𝐴 ⊆ ℝ*)
infleinf2.b (𝜑𝐵 ⊆ ℝ*)
infleinf2.y ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑦𝑥)
Assertion
Ref Expression
infleinf2 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem infleinf2
StepHypRef Expression
1 infleinf2.x . . 3 𝑥𝜑
2 infleinf2.y . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑦𝑥)
3 infleinf2.p . . . . . 6 𝑦𝜑
4 nfv 1918 . . . . . 6 𝑦 𝑥𝐵
53, 4nfan 1903 . . . . 5 𝑦(𝜑𝑥𝐵)
6 nfv 1918 . . . . 5 𝑦inf(𝐴, ℝ*, < ) ≤ 𝑥
7 infleinf2.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ*)
87infxrcld 42819 . . . . . . . . 9 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
983ad2ant1 1131 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
1093adant1r 1175 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
117sselda 3917 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
12113adant3 1130 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → 𝑦 ∈ ℝ*)
13123adant1r 1175 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑦 ∈ ℝ*)
14 infleinf2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
1514sselda 3917 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥 ∈ ℝ*)
16153ad2ant1 1131 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑥 ∈ ℝ*)
177adantr 480 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
18 simpr 484 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
19 infxrlb 12997 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑦𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
2017, 18, 19syl2anc 583 . . . . . . . . 9 ((𝜑𝑦𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
21203adant3 1130 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
22213adant1r 1175 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
23 simp3 1136 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑦𝑥)
2410, 13, 16, 22, 23xrletrd 12825 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
25243exp 1117 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐴 → (𝑦𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥)))
265, 6, 25rexlimd 3245 . . . 4 ((𝜑𝑥𝐵) → (∃𝑦𝐴 𝑦𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥))
272, 26mpd 15 . . 3 ((𝜑𝑥𝐵) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
281, 27ralrimia 3420 . 2 (𝜑 → ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥)
29 infxrgelb 12998 . . 3 ((𝐵 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3014, 8, 29syl2anc 583 . 2 (𝜑 → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3128, 30mpbird 256 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wnf 1787  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  infcinf 9130  *cxr 10939   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  infrnmptle  42853  infxrpnf  42876
  Copyright terms: Public domain W3C validator