![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infleinf2 | Structured version Visualization version GIF version |
Description: If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
infleinf2.x | ⊢ Ⅎ𝑥𝜑 |
infleinf2.p | ⊢ Ⅎ𝑦𝜑 |
infleinf2.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
infleinf2.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ*) |
infleinf2.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Ref | Expression |
---|---|
infleinf2 | ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infleinf2.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | infleinf2.y | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
3 | infleinf2.p | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
4 | nfv 1910 | . . . . . 6 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐵 | |
5 | 3, 4 | nfan 1895 | . . . . 5 ⊢ Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ 𝐵) |
6 | nfv 1910 | . . . . 5 ⊢ Ⅎ𝑦inf(𝐴, ℝ*, < ) ≤ 𝑥 | |
7 | infleinf2.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | |
8 | 7 | infxrcld 45022 | . . . . . . . . 9 ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
9 | 8 | 3ad2ant1 1130 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
10 | 9 | 3adant1r 1174 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
11 | 7 | sselda 3979 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
12 | 11 | 3adant3 1129 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑦 ∈ ℝ*) |
13 | 12 | 3adant1r 1174 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑦 ∈ ℝ*) |
14 | infleinf2.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ ℝ*) | |
15 | 14 | sselda 3979 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ ℝ*) |
16 | 15 | 3ad2ant1 1130 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑥 ∈ ℝ*) |
17 | 7 | adantr 479 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
18 | simpr 483 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
19 | infxrlb 13369 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦) | |
20 | 17, 18, 19 | syl2anc 582 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦) |
21 | 20 | 3adant3 1129 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦) |
22 | 21 | 3adant1r 1174 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦) |
23 | simp3 1135 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑥) | |
24 | 10, 13, 16, 22, 23 | xrletrd 13197 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
25 | 24 | 3exp 1116 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐴 → (𝑦 ≤ 𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥))) |
26 | 5, 6, 25 | rexlimd 3254 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥)) |
27 | 2, 26 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
28 | 1, 27 | ralrimia 3246 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥) |
29 | infxrgelb 13370 | . . 3 ⊢ ((𝐵 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥)) | |
30 | 14, 8, 29 | syl2anc 582 | . 2 ⊢ (𝜑 → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥)) |
31 | 28, 30 | mpbird 256 | 1 ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 Ⅎwnf 1778 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 ⊆ wss 3947 class class class wbr 5155 infcinf 9486 ℝ*cxr 11299 < clt 11300 ≤ cle 11301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 ax-pre-sup 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-br 5156 df-opab 5218 df-mpt 5239 df-id 5582 df-po 5596 df-so 5597 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 df-sup 9487 df-inf 9488 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 |
This theorem is referenced by: infrnmptle 45056 infxrpnf 45079 |
Copyright terms: Public domain | W3C validator |