![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infleinf2 | Structured version Visualization version GIF version |
Description: If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
infleinf2.x | ⊢ Ⅎ𝑥𝜑 |
infleinf2.p | ⊢ Ⅎ𝑦𝜑 |
infleinf2.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
infleinf2.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ*) |
infleinf2.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Ref | Expression |
---|---|
infleinf2 | ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infleinf2.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | infleinf2.y | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
3 | infleinf2.p | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
4 | nfv 1912 | . . . . . 6 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐵 | |
5 | 3, 4 | nfan 1897 | . . . . 5 ⊢ Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ 𝐵) |
6 | nfv 1912 | . . . . 5 ⊢ Ⅎ𝑦inf(𝐴, ℝ*, < ) ≤ 𝑥 | |
7 | infleinf2.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | |
8 | 7 | infxrcld 45339 | . . . . . . . . 9 ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
9 | 8 | 3ad2ant1 1132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
10 | 9 | 3adant1r 1176 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
11 | 7 | sselda 3995 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
12 | 11 | 3adant3 1131 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑦 ∈ ℝ*) |
13 | 12 | 3adant1r 1176 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑦 ∈ ℝ*) |
14 | infleinf2.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ ℝ*) | |
15 | 14 | sselda 3995 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ ℝ*) |
16 | 15 | 3ad2ant1 1132 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑥 ∈ ℝ*) |
17 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
18 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
19 | infxrlb 13373 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦) | |
20 | 17, 18, 19 | syl2anc 584 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦) |
21 | 20 | 3adant3 1131 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦) |
22 | 21 | 3adant1r 1176 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦) |
23 | simp3 1137 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑥) | |
24 | 10, 13, 16, 22, 23 | xrletrd 13201 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
25 | 24 | 3exp 1118 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐴 → (𝑦 ≤ 𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥))) |
26 | 5, 6, 25 | rexlimd 3264 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥)) |
27 | 2, 26 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
28 | 1, 27 | ralrimia 3256 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥) |
29 | infxrgelb 13374 | . . 3 ⊢ ((𝐵 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥)) | |
30 | 14, 8, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥)) |
31 | 28, 30 | mpbird 257 | 1 ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1780 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 class class class wbr 5148 infcinf 9479 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 |
This theorem is referenced by: infrnmptle 45373 infxrpnf 45396 |
Copyright terms: Public domain | W3C validator |