Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinf2 Structured version   Visualization version   GIF version

Theorem infleinf2 42954
Description: If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
infleinf2.x 𝑥𝜑
infleinf2.p 𝑦𝜑
infleinf2.a (𝜑𝐴 ⊆ ℝ*)
infleinf2.b (𝜑𝐵 ⊆ ℝ*)
infleinf2.y ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑦𝑥)
Assertion
Ref Expression
infleinf2 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem infleinf2
StepHypRef Expression
1 infleinf2.x . . 3 𝑥𝜑
2 infleinf2.y . . . 4 ((𝜑𝑥𝐵) → ∃𝑦𝐴 𝑦𝑥)
3 infleinf2.p . . . . . 6 𝑦𝜑
4 nfv 1917 . . . . . 6 𝑦 𝑥𝐵
53, 4nfan 1902 . . . . 5 𝑦(𝜑𝑥𝐵)
6 nfv 1917 . . . . 5 𝑦inf(𝐴, ℝ*, < ) ≤ 𝑥
7 infleinf2.a . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ*)
87infxrcld 42929 . . . . . . . . 9 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
983ad2ant1 1132 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
1093adant1r 1176 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*)
117sselda 3921 . . . . . . . . 9 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
12113adant3 1131 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → 𝑦 ∈ ℝ*)
13123adant1r 1176 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑦 ∈ ℝ*)
14 infleinf2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
1514sselda 3921 . . . . . . . 8 ((𝜑𝑥𝐵) → 𝑥 ∈ ℝ*)
16153ad2ant1 1132 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑥 ∈ ℝ*)
177adantr 481 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝐴 ⊆ ℝ*)
18 simpr 485 . . . . . . . . . 10 ((𝜑𝑦𝐴) → 𝑦𝐴)
19 infxrlb 13068 . . . . . . . . . 10 ((𝐴 ⊆ ℝ*𝑦𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
2017, 18, 19syl2anc 584 . . . . . . . . 9 ((𝜑𝑦𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
21203adant3 1131 . . . . . . . 8 ((𝜑𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
22213adant1r 1176 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦)
23 simp3 1137 . . . . . . 7 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → 𝑦𝑥)
2410, 13, 16, 22, 23xrletrd 12896 . . . . . 6 (((𝜑𝑥𝐵) ∧ 𝑦𝐴𝑦𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
25243exp 1118 . . . . 5 ((𝜑𝑥𝐵) → (𝑦𝐴 → (𝑦𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥)))
265, 6, 25rexlimd 3250 . . . 4 ((𝜑𝑥𝐵) → (∃𝑦𝐴 𝑦𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥))
272, 26mpd 15 . . 3 ((𝜑𝑥𝐵) → inf(𝐴, ℝ*, < ) ≤ 𝑥)
281, 27ralrimia 3430 . 2 (𝜑 → ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥)
29 infxrgelb 13069 . . 3 ((𝐵 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3014, 8, 29syl2anc 584 . 2 (𝜑 → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥))
3128, 30mpbird 256 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wnf 1786  wcel 2106  wral 3064  wrex 3065  wss 3887   class class class wbr 5074  infcinf 9200  *cxr 11008   < clt 11009  cle 11010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208
This theorem is referenced by:  infrnmptle  42963  infxrpnf  42986
  Copyright terms: Public domain W3C validator