![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infleinf2 | Structured version Visualization version GIF version |
Description: If any element in 𝐵 is greater than or equal to an element in 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐵. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
infleinf2.x | ⊢ Ⅎ𝑥𝜑 |
infleinf2.p | ⊢ Ⅎ𝑦𝜑 |
infleinf2.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
infleinf2.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ*) |
infleinf2.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
Ref | Expression |
---|---|
infleinf2 | ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infleinf2.x | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | infleinf2.y | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | |
3 | infleinf2.p | . . . . . 6 ⊢ Ⅎ𝑦𝜑 | |
4 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐵 | |
5 | 3, 4 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ 𝐵) |
6 | nfv 1913 | . . . . 5 ⊢ Ⅎ𝑦inf(𝐴, ℝ*, < ) ≤ 𝑥 | |
7 | infleinf2.a | . . . . . . . . . 10 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | |
8 | 7 | infxrcld 45304 | . . . . . . . . 9 ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
9 | 8 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
10 | 9 | 3adant1r 1177 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ∈ ℝ*) |
11 | 7 | sselda 4008 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
12 | 11 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑦 ∈ ℝ*) |
13 | 12 | 3adant1r 1177 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑦 ∈ ℝ*) |
14 | infleinf2.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ ℝ*) | |
15 | 14 | sselda 4008 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ ℝ*) |
16 | 15 | 3ad2ant1 1133 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑥 ∈ ℝ*) |
17 | 7 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝐴 ⊆ ℝ*) |
18 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ 𝐴) | |
19 | infxrlb 13396 | . . . . . . . . . 10 ⊢ ((𝐴 ⊆ ℝ* ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦) | |
20 | 17, 18, 19 | syl2anc 583 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑦) |
21 | 20 | 3adant3 1132 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦) |
22 | 21 | 3adant1r 1177 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑦) |
23 | simp3 1138 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑥) | |
24 | 10, 13, 16, 22, 23 | xrletrd 13224 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ 𝑦 ∈ 𝐴 ∧ 𝑦 ≤ 𝑥) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
25 | 24 | 3exp 1119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 ∈ 𝐴 → (𝑦 ≤ 𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥))) |
26 | 5, 6, 25 | rexlimd 3272 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → inf(𝐴, ℝ*, < ) ≤ 𝑥)) |
27 | 2, 26 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → inf(𝐴, ℝ*, < ) ≤ 𝑥) |
28 | 1, 27 | ralrimia 3264 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥) |
29 | infxrgelb 13397 | . . 3 ⊢ ((𝐵 ⊆ ℝ* ∧ inf(𝐴, ℝ*, < ) ∈ ℝ*) → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥)) | |
30 | 14, 8, 29 | syl2anc 583 | . 2 ⊢ (𝜑 → (inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐵 inf(𝐴, ℝ*, < ) ≤ 𝑥)) |
31 | 28, 30 | mpbird 257 | 1 ⊢ (𝜑 → inf(𝐴, ℝ*, < ) ≤ inf(𝐵, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 Ⅎwnf 1781 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 infcinf 9510 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 |
This theorem is referenced by: infrnmptle 45338 infxrpnf 45361 |
Copyright terms: Public domain | W3C validator |