Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf3 Structured version   Visualization version   GIF version

Theorem climinf3 43147
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf3.1 𝑘𝜑
climinf3.2 𝑘𝐹
climinf3.3 (𝜑𝑀 ∈ ℤ)
climinf3.4 𝑍 = (ℤ𝑀)
climinf3.5 (𝜑𝐹:𝑍⟶ℝ)
climinf3.6 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf3.7 (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climinf3 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem climinf3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf3.1 . 2 𝑘𝜑
2 climinf3.2 . 2 𝑘𝐹
3 climinf3.4 . 2 𝑍 = (ℤ𝑀)
4 climinf3.3 . 2 (𝜑𝑀 ∈ ℤ)
5 climinf3.5 . 2 (𝜑𝐹:𝑍⟶ℝ)
6 climinf3.6 . 2 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7 climinf3.7 . . . 4 (𝜑𝐹 ∈ dom ⇝ )
85ffvelrnda 6943 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
98recnd 10934 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
101, 9ralrimia 3420 . . . 4 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
112, 3climbddf 43118 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
124, 7, 10, 11syl3anc 1369 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
13 renegcl 11214 . . . . . 6 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
1413ad2antlr 723 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → -𝑥 ∈ ℝ)
15 nfv 1918 . . . . . . . 8 𝑘 𝑥 ∈ ℝ
161, 15nfan 1903 . . . . . . 7 𝑘(𝜑𝑥 ∈ ℝ)
17 nfra1 3142 . . . . . . 7 𝑘𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥
1816, 17nfan 1903 . . . . . 6 𝑘((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
19 simpll 763 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → (𝜑𝑥 ∈ ℝ))
20 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → 𝑘𝑍)
21 rspa 3130 . . . . . . . . 9 ((∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ 𝑥)
2221adantll 710 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ 𝑥)
23 simpr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (abs‘(𝐹𝑘)) ≤ 𝑥)
248ad4ant13 747 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (𝐹𝑘) ∈ ℝ)
25 simpllr 772 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → 𝑥 ∈ ℝ)
2624, 25absled 15070 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → ((abs‘(𝐹𝑘)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ 𝑥)))
2723, 26mpbid 231 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (-𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ 𝑥))
2827simpld 494 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → -𝑥 ≤ (𝐹𝑘))
2919, 20, 22, 28syl21anc 834 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → -𝑥 ≤ (𝐹𝑘))
3029ex 412 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → (𝑘𝑍 → -𝑥 ≤ (𝐹𝑘)))
3118, 30ralrimi 3139 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘))
32 breq1 5073 . . . . . . 7 (𝑦 = -𝑥 → (𝑦 ≤ (𝐹𝑘) ↔ -𝑥 ≤ (𝐹𝑘)))
3332ralbidv 3120 . . . . . 6 (𝑦 = -𝑥 → (∀𝑘𝑍 𝑦 ≤ (𝐹𝑘) ↔ ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘)))
3433rspcev 3552 . . . . 5 ((-𝑥 ∈ ℝ ∧ ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘)) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
3514, 31, 34syl2anc 583 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
3635rexlimdva2 3215 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘)))
3712, 36mpd 15 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
381, 2, 3, 4, 5, 6, 37climinf2 43138 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  wral 3063  wrex 3064   class class class wbr 5070  dom cdm 5580  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  infcinf 9130  cc 10800  cr 10801  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  -cneg 11136  cz 12249  cuz 12511  abscabs 14873  cli 15121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator