![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf3 | Structured version Visualization version GIF version |
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climinf3.1 | ⊢ Ⅎ𝑘𝜑 |
climinf3.2 | ⊢ Ⅎ𝑘𝐹 |
climinf3.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinf3.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinf3.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinf3.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinf3.7 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
Ref | Expression |
---|---|
climinf3 | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinf3.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | climinf3.2 | . 2 ⊢ Ⅎ𝑘𝐹 | |
3 | climinf3.4 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | climinf3.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climinf3.5 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
6 | climinf3.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
7 | climinf3.7 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
8 | 5 | ffvelcdmda 7076 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
9 | 8 | recnd 11239 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
10 | 1, 9 | ralrimia 3247 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
11 | 2, 3 | climbddf 44888 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
12 | 4, 7, 10, 11 | syl3anc 1368 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
13 | renegcl 11520 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
14 | 13 | ad2antlr 724 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → -𝑥 ∈ ℝ) |
15 | nfv 1909 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝑥 ∈ ℝ | |
16 | 1, 15 | nfan 1894 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ ℝ) |
17 | nfra1 3273 | . . . . . . 7 ⊢ Ⅎ𝑘∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 | |
18 | 16, 17 | nfan 1894 | . . . . . 6 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
19 | simpll 764 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → (𝜑 ∧ 𝑥 ∈ ℝ)) | |
20 | simpr 484 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
21 | rspa 3237 | . . . . . . . . 9 ⊢ ((∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) | |
22 | 21 | adantll 711 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
23 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) | |
24 | 8 | ad4ant13 748 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (𝐹‘𝑘) ∈ ℝ) |
25 | simpllr 773 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → 𝑥 ∈ ℝ) | |
26 | 24, 25 | absled 15374 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ((abs‘(𝐹‘𝑘)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ 𝑥))) |
27 | 23, 26 | mpbid 231 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (-𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ 𝑥)) |
28 | 27 | simpld 494 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → -𝑥 ≤ (𝐹‘𝑘)) |
29 | 19, 20, 22, 28 | syl21anc 835 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → -𝑥 ≤ (𝐹‘𝑘)) |
30 | 29 | ex 412 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (𝑘 ∈ 𝑍 → -𝑥 ≤ (𝐹‘𝑘))) |
31 | 18, 30 | ralrimi 3246 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘)) |
32 | breq1 5141 | . . . . . . 7 ⊢ (𝑦 = -𝑥 → (𝑦 ≤ (𝐹‘𝑘) ↔ -𝑥 ≤ (𝐹‘𝑘))) | |
33 | 32 | ralbidv 3169 | . . . . . 6 ⊢ (𝑦 = -𝑥 → (∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘))) |
34 | 33 | rspcev 3604 | . . . . 5 ⊢ ((-𝑥 ∈ ℝ ∧ ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
35 | 14, 31, 34 | syl2anc 583 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
36 | 35 | rexlimdva2 3149 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘))) |
37 | 12, 36 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
38 | 1, 2, 3, 4, 5, 6, 37 | climinf2 44908 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 Ⅎwnf 1777 ∈ wcel 2098 Ⅎwnfc 2875 ∀wral 3053 ∃wrex 3062 class class class wbr 5138 dom cdm 5666 ran crn 5667 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 infcinf 9432 ℂcc 11104 ℝcr 11105 1c1 11107 + caddc 11109 ℝ*cxr 11244 < clt 11245 ≤ cle 11246 -cneg 11442 ℤcz 12555 ℤ≥cuz 12819 abscabs 15178 ⇝ cli 15425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-fz 13482 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |