Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climinf3 | Structured version Visualization version GIF version |
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
climinf3.1 | ⊢ Ⅎ𝑘𝜑 |
climinf3.2 | ⊢ Ⅎ𝑘𝐹 |
climinf3.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climinf3.4 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climinf3.5 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
climinf3.6 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) |
climinf3.7 | ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |
Ref | Expression |
---|---|
climinf3 | ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climinf3.1 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | climinf3.2 | . 2 ⊢ Ⅎ𝑘𝐹 | |
3 | climinf3.4 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | climinf3.3 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
5 | climinf3.5 | . 2 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
6 | climinf3.6 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹‘𝑘)) | |
7 | climinf3.7 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) | |
8 | 5 | ffvelrnda 6943 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ) |
9 | 8 | recnd 10934 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
10 | 1, 9 | ralrimia 3420 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) |
11 | 2, 3 | climbddf 43118 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
12 | 4, 7, 10, 11 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
13 | renegcl 11214 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → -𝑥 ∈ ℝ) | |
14 | 13 | ad2antlr 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → -𝑥 ∈ ℝ) |
15 | nfv 1918 | . . . . . . . 8 ⊢ Ⅎ𝑘 𝑥 ∈ ℝ | |
16 | 1, 15 | nfan 1903 | . . . . . . 7 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ ℝ) |
17 | nfra1 3142 | . . . . . . 7 ⊢ Ⅎ𝑘∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 | |
18 | 16, 17 | nfan 1903 | . . . . . 6 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
19 | simpll 763 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → (𝜑 ∧ 𝑥 ∈ ℝ)) | |
20 | simpr 484 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | |
21 | rspa 3130 | . . . . . . . . 9 ⊢ ((∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) | |
22 | 21 | adantll 710 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) |
23 | simpr 484 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (abs‘(𝐹‘𝑘)) ≤ 𝑥) | |
24 | 8 | ad4ant13 747 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (𝐹‘𝑘) ∈ ℝ) |
25 | simpllr 772 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → 𝑥 ∈ ℝ) | |
26 | 24, 25 | absled 15070 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ((abs‘(𝐹‘𝑘)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ 𝑥))) |
27 | 23, 26 | mpbid 231 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (-𝑥 ≤ (𝐹‘𝑘) ∧ (𝐹‘𝑘) ≤ 𝑥)) |
28 | 27 | simpld 494 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ 𝑍) ∧ (abs‘(𝐹‘𝑘)) ≤ 𝑥) → -𝑥 ≤ (𝐹‘𝑘)) |
29 | 19, 20, 22, 28 | syl21anc 834 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) ∧ 𝑘 ∈ 𝑍) → -𝑥 ≤ (𝐹‘𝑘)) |
30 | 29 | ex 412 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → (𝑘 ∈ 𝑍 → -𝑥 ≤ (𝐹‘𝑘))) |
31 | 18, 30 | ralrimi 3139 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘)) |
32 | breq1 5073 | . . . . . . 7 ⊢ (𝑦 = -𝑥 → (𝑦 ≤ (𝐹‘𝑘) ↔ -𝑥 ≤ (𝐹‘𝑘))) | |
33 | 32 | ralbidv 3120 | . . . . . 6 ⊢ (𝑦 = -𝑥 → (∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘) ↔ ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘))) |
34 | 33 | rspcev 3552 | . . . . 5 ⊢ ((-𝑥 ∈ ℝ ∧ ∀𝑘 ∈ 𝑍 -𝑥 ≤ (𝐹‘𝑘)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
35 | 14, 31, 34 | syl2anc 583 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
36 | 35 | rexlimdva2 3215 | . . 3 ⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ 𝑍 (abs‘(𝐹‘𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘))) |
37 | 12, 36 | mpd 15 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘 ∈ 𝑍 𝑦 ≤ (𝐹‘𝑘)) |
38 | 1, 2, 3, 4, 5, 6, 37 | climinf2 43138 | 1 ⊢ (𝜑 → 𝐹 ⇝ inf(ran 𝐹, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ∀wral 3063 ∃wrex 3064 class class class wbr 5070 dom cdm 5580 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 infcinf 9130 ℂcc 10800 ℝcr 10801 1c1 10803 + caddc 10805 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 -cneg 11136 ℤcz 12249 ℤ≥cuz 12511 abscabs 14873 ⇝ cli 15121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |