Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf3 Structured version   Visualization version   GIF version

Theorem climinf3 45672
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf3.1 𝑘𝜑
climinf3.2 𝑘𝐹
climinf3.3 (𝜑𝑀 ∈ ℤ)
climinf3.4 𝑍 = (ℤ𝑀)
climinf3.5 (𝜑𝐹:𝑍⟶ℝ)
climinf3.6 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf3.7 (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climinf3 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem climinf3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf3.1 . 2 𝑘𝜑
2 climinf3.2 . 2 𝑘𝐹
3 climinf3.4 . 2 𝑍 = (ℤ𝑀)
4 climinf3.3 . 2 (𝜑𝑀 ∈ ℤ)
5 climinf3.5 . 2 (𝜑𝐹:𝑍⟶ℝ)
6 climinf3.6 . 2 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7 climinf3.7 . . . 4 (𝜑𝐹 ∈ dom ⇝ )
85ffvelcdmda 7104 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
98recnd 11287 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
101, 9ralrimia 3256 . . . 4 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
112, 3climbddf 45643 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
124, 7, 10, 11syl3anc 1370 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
13 renegcl 11570 . . . . . 6 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
1413ad2antlr 727 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → -𝑥 ∈ ℝ)
15 nfv 1912 . . . . . . . 8 𝑘 𝑥 ∈ ℝ
161, 15nfan 1897 . . . . . . 7 𝑘(𝜑𝑥 ∈ ℝ)
17 nfra1 3282 . . . . . . 7 𝑘𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥
1816, 17nfan 1897 . . . . . 6 𝑘((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
19 simpll 767 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → (𝜑𝑥 ∈ ℝ))
20 simpr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → 𝑘𝑍)
21 rspa 3246 . . . . . . . . 9 ((∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ 𝑥)
2221adantll 714 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ 𝑥)
23 simpr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (abs‘(𝐹𝑘)) ≤ 𝑥)
248ad4ant13 751 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (𝐹𝑘) ∈ ℝ)
25 simpllr 776 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → 𝑥 ∈ ℝ)
2624, 25absled 15466 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → ((abs‘(𝐹𝑘)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ 𝑥)))
2723, 26mpbid 232 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (-𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ 𝑥))
2827simpld 494 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → -𝑥 ≤ (𝐹𝑘))
2919, 20, 22, 28syl21anc 838 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → -𝑥 ≤ (𝐹𝑘))
3029ex 412 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → (𝑘𝑍 → -𝑥 ≤ (𝐹𝑘)))
3118, 30ralrimi 3255 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘))
32 breq1 5151 . . . . . . 7 (𝑦 = -𝑥 → (𝑦 ≤ (𝐹𝑘) ↔ -𝑥 ≤ (𝐹𝑘)))
3332ralbidv 3176 . . . . . 6 (𝑦 = -𝑥 → (∀𝑘𝑍 𝑦 ≤ (𝐹𝑘) ↔ ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘)))
3433rspcev 3622 . . . . 5 ((-𝑥 ∈ ℝ ∧ ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘)) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
3514, 31, 34syl2anc 584 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
3635rexlimdva2 3155 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘)))
3712, 36mpd 15 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
381, 2, 3, 4, 5, 6, 37climinf2 45663 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888  wral 3059  wrex 3068   class class class wbr 5148  dom cdm 5689  ran crn 5690  wf 6559  cfv 6563  (class class class)co 7431  infcinf 9479  cc 11151  cr 11152  1c1 11154   + caddc 11156  *cxr 11292   < clt 11293  cle 11294  -cneg 11491  cz 12611  cuz 12876  abscabs 15270  cli 15517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator