Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinf3 Structured version   Visualization version   GIF version

Theorem climinf3 42752
Description: A convergent, nonincreasing sequence, converges to the infimum of its range. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
climinf3.1 𝑘𝜑
climinf3.2 𝑘𝐹
climinf3.3 (𝜑𝑀 ∈ ℤ)
climinf3.4 𝑍 = (ℤ𝑀)
climinf3.5 (𝜑𝐹:𝑍⟶ℝ)
climinf3.6 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
climinf3.7 (𝜑𝐹 ∈ dom ⇝ )
Assertion
Ref Expression
climinf3 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   𝐹(𝑘)

Proof of Theorem climinf3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climinf3.1 . 2 𝑘𝜑
2 climinf3.2 . 2 𝑘𝐹
3 climinf3.4 . 2 𝑍 = (ℤ𝑀)
4 climinf3.3 . 2 (𝜑𝑀 ∈ ℤ)
5 climinf3.5 . 2 (𝜑𝐹:𝑍⟶ℝ)
6 climinf3.6 . 2 ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))
7 climinf3.7 . . . 4 (𝜑𝐹 ∈ dom ⇝ )
85ffvelrnda 6847 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)
98recnd 10712 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
101, 9ralrimia 3407 . . . 4 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
112, 3climbddf 42723 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
124, 7, 10, 11syl3anc 1368 . . 3 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
13 renegcl 10992 . . . . . 6 (𝑥 ∈ ℝ → -𝑥 ∈ ℝ)
1413ad2antlr 726 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → -𝑥 ∈ ℝ)
15 nfv 1915 . . . . . . . 8 𝑘 𝑥 ∈ ℝ
161, 15nfan 1900 . . . . . . 7 𝑘(𝜑𝑥 ∈ ℝ)
17 nfra1 3147 . . . . . . 7 𝑘𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥
1816, 17nfan 1900 . . . . . 6 𝑘((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
19 simpll 766 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → (𝜑𝑥 ∈ ℝ))
20 simpr 488 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → 𝑘𝑍)
21 rspa 3135 . . . . . . . . 9 ((∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ 𝑥)
2221adantll 713 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → (abs‘(𝐹𝑘)) ≤ 𝑥)
23 simpr 488 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (abs‘(𝐹𝑘)) ≤ 𝑥)
248ad4ant13 750 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (𝐹𝑘) ∈ ℝ)
25 simpllr 775 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → 𝑥 ∈ ℝ)
2624, 25absled 14843 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → ((abs‘(𝐹𝑘)) ≤ 𝑥 ↔ (-𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ 𝑥)))
2723, 26mpbid 235 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → (-𝑥 ≤ (𝐹𝑘) ∧ (𝐹𝑘) ≤ 𝑥))
2827simpld 498 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (abs‘(𝐹𝑘)) ≤ 𝑥) → -𝑥 ≤ (𝐹𝑘))
2919, 20, 22, 28syl21anc 836 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) ∧ 𝑘𝑍) → -𝑥 ≤ (𝐹𝑘))
3029ex 416 . . . . . 6 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → (𝑘𝑍 → -𝑥 ≤ (𝐹𝑘)))
3118, 30ralrimi 3144 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘))
32 breq1 5038 . . . . . . 7 (𝑦 = -𝑥 → (𝑦 ≤ (𝐹𝑘) ↔ -𝑥 ≤ (𝐹𝑘)))
3332ralbidv 3126 . . . . . 6 (𝑦 = -𝑥 → (∀𝑘𝑍 𝑦 ≤ (𝐹𝑘) ↔ ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘)))
3433rspcev 3543 . . . . 5 ((-𝑥 ∈ ℝ ∧ ∀𝑘𝑍 -𝑥 ≤ (𝐹𝑘)) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
3514, 31, 34syl2anc 587 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
3635rexlimdva2 3211 . . 3 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘)))
3712, 36mpd 15 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑘𝑍 𝑦 ≤ (𝐹𝑘))
381, 2, 3, 4, 5, 6, 37climinf2 42743 1 (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wnf 1785  wcel 2111  wnfc 2899  wral 3070  wrex 3071   class class class wbr 5035  dom cdm 5527  ran crn 5528  wf 6335  cfv 6339  (class class class)co 7155  infcinf 8943  cc 10578  cr 10579  1c1 10581   + caddc 10583  *cxr 10717   < clt 10718  cle 10719  -cneg 10914  cz 12025  cuz 12287  abscabs 14646  cli 14894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-sup 8944  df-inf 8945  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-z 12026  df-uz 12288  df-rp 12436  df-fz 12945  df-seq 13424  df-exp 13485  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-clim 14898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator