Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unb2ltle Structured version   Visualization version   GIF version

Theorem unb2ltle 44697
Description: "Unbounded below" expressed with < and with . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
unb2ltle (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
Distinct variable group:   𝑤,𝐴,𝑥,𝑦

Proof of Theorem unb2ltle
StepHypRef Expression
1 nfv 1909 . . . . . 6 𝑤 𝐴 ⊆ ℝ*
2 nfra1 3275 . . . . . 6 𝑤𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤
31, 2nfan 1894 . . . . 5 𝑤(𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤)
4 simpll 764 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ*)
5 simpr 484 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
6 rspa 3239 . . . . . . 7 ((∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
76adantll 711 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
8 ssel2 3972 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
98ad4ant13 748 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦 ∈ ℝ*)
10 simpllr 773 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ)
1110rexrd 11268 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ*)
12 simpr 484 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦 < 𝑤)
139, 11, 12xrltled 13135 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦𝑤)
1413ex 412 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 < 𝑤𝑦𝑤))
1514reximdva 3162 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (∃𝑦𝐴 𝑦 < 𝑤 → ∃𝑦𝐴 𝑦𝑤))
1615imp 406 . . . . . 6 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ ∃𝑦𝐴 𝑦 < 𝑤) → ∃𝑦𝐴 𝑦𝑤)
174, 5, 7, 16syl21anc 835 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦𝑤)
183, 17ralrimia 3249 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦𝑤)
19 breq2 5145 . . . . . 6 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
2019rexbidv 3172 . . . . 5 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑦𝑤 ↔ ∃𝑦𝐴 𝑦𝑥))
2120cbvralvw 3228 . . . 4 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
2218, 21sylib 217 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
2322ex 412 . 2 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
24 simpll 764 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ*)
25 simpr 484 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
26 peano2rem 11531 . . . . . . . 8 (𝑤 ∈ ℝ → (𝑤 − 1) ∈ ℝ)
2726adantl 481 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → (𝑤 − 1) ∈ ℝ)
28 simpl 482 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
29 breq2 5145 . . . . . . . . 9 (𝑥 = (𝑤 − 1) → (𝑦𝑥𝑦 ≤ (𝑤 − 1)))
3029rexbidv 3172 . . . . . . . 8 (𝑥 = (𝑤 − 1) → (∃𝑦𝐴 𝑦𝑥 ↔ ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1)))
3130rspcva 3604 . . . . . . 7 (((𝑤 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
3227, 28, 31syl2anc 583 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
3332adantll 711 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
348ad4ant13 748 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ∈ ℝ*)
35 simpllr 773 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ)
3626rexrd 11268 . . . . . . . . . 10 (𝑤 ∈ ℝ → (𝑤 − 1) ∈ ℝ*)
3735, 36syl 17 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) ∈ ℝ*)
3835rexrd 11268 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ*)
39 simpr 484 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ≤ (𝑤 − 1))
4035ltm1d 12150 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) < 𝑤)
4134, 37, 38, 39, 40xrlelttrd 13145 . . . . . . . 8 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 < 𝑤)
4241ex 412 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ≤ (𝑤 − 1) → 𝑦 < 𝑤))
4342reximdva 3162 . . . . . 6 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (∃𝑦𝐴 𝑦 ≤ (𝑤 − 1) → ∃𝑦𝐴 𝑦 < 𝑤))
4443imp 406 . . . . 5 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1)) → ∃𝑦𝐴 𝑦 < 𝑤)
4524, 25, 33, 44syl21anc 835 . . . 4 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
4645ralrimiva 3140 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤)
4746ex 412 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤))
4823, 47impbid 211 1 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3055  wrex 3064  wss 3943   class class class wbr 5141  (class class class)co 7405  cr 11111  1c1 11113  *cxr 11251   < clt 11252  cle 11253  cmin 11448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451
This theorem is referenced by:  infxrunb3  44706
  Copyright terms: Public domain W3C validator