Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unb2ltle Structured version   Visualization version   GIF version

Theorem unb2ltle 42845
Description: "Unbounded below" expressed with < and with . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
unb2ltle (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
Distinct variable group:   𝑤,𝐴,𝑥,𝑦

Proof of Theorem unb2ltle
StepHypRef Expression
1 nfv 1918 . . . . . 6 𝑤 𝐴 ⊆ ℝ*
2 nfra1 3142 . . . . . 6 𝑤𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤
31, 2nfan 1903 . . . . 5 𝑤(𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤)
4 simpll 763 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ*)
5 simpr 484 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
6 rspa 3130 . . . . . . 7 ((∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
76adantll 710 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
8 ssel2 3912 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
98ad4ant13 747 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦 ∈ ℝ*)
10 simpllr 772 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ)
1110rexrd 10956 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ*)
12 simpr 484 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦 < 𝑤)
139, 11, 12xrltled 12813 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦𝑤)
1413ex 412 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 < 𝑤𝑦𝑤))
1514reximdva 3202 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (∃𝑦𝐴 𝑦 < 𝑤 → ∃𝑦𝐴 𝑦𝑤))
1615imp 406 . . . . . 6 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ ∃𝑦𝐴 𝑦 < 𝑤) → ∃𝑦𝐴 𝑦𝑤)
174, 5, 7, 16syl21anc 834 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦𝑤)
183, 17ralrimia 3420 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦𝑤)
19 breq2 5074 . . . . . 6 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
2019rexbidv 3225 . . . . 5 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑦𝑤 ↔ ∃𝑦𝐴 𝑦𝑥))
2120cbvralvw 3372 . . . 4 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
2218, 21sylib 217 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
2322ex 412 . 2 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
24 simpll 763 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ*)
25 simpr 484 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
26 peano2rem 11218 . . . . . . . 8 (𝑤 ∈ ℝ → (𝑤 − 1) ∈ ℝ)
2726adantl 481 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → (𝑤 − 1) ∈ ℝ)
28 simpl 482 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
29 breq2 5074 . . . . . . . . 9 (𝑥 = (𝑤 − 1) → (𝑦𝑥𝑦 ≤ (𝑤 − 1)))
3029rexbidv 3225 . . . . . . . 8 (𝑥 = (𝑤 − 1) → (∃𝑦𝐴 𝑦𝑥 ↔ ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1)))
3130rspcva 3550 . . . . . . 7 (((𝑤 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
3227, 28, 31syl2anc 583 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
3332adantll 710 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
348ad4ant13 747 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ∈ ℝ*)
35 simpllr 772 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ)
3626rexrd 10956 . . . . . . . . . 10 (𝑤 ∈ ℝ → (𝑤 − 1) ∈ ℝ*)
3735, 36syl 17 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) ∈ ℝ*)
3835rexrd 10956 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ*)
39 simpr 484 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ≤ (𝑤 − 1))
4035ltm1d 11837 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) < 𝑤)
4134, 37, 38, 39, 40xrlelttrd 12823 . . . . . . . 8 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 < 𝑤)
4241ex 412 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ≤ (𝑤 − 1) → 𝑦 < 𝑤))
4342reximdva 3202 . . . . . 6 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (∃𝑦𝐴 𝑦 ≤ (𝑤 − 1) → ∃𝑦𝐴 𝑦 < 𝑤))
4443imp 406 . . . . 5 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1)) → ∃𝑦𝐴 𝑦 < 𝑤)
4524, 25, 33, 44syl21anc 834 . . . 4 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
4645ralrimiva 3107 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤)
4746ex 412 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤))
4823, 47impbid 211 1 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  (class class class)co 7255  cr 10801  1c1 10803  *cxr 10939   < clt 10940  cle 10941  cmin 11135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  infxrunb3  42854
  Copyright terms: Public domain W3C validator