Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unb2ltle Structured version   Visualization version   GIF version

Theorem unb2ltle 45453
Description: "Unbounded below" expressed with < and with . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
unb2ltle (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
Distinct variable group:   𝑤,𝐴,𝑥,𝑦

Proof of Theorem unb2ltle
StepHypRef Expression
1 nfv 1915 . . . . . 6 𝑤 𝐴 ⊆ ℝ*
2 nfra1 3256 . . . . . 6 𝑤𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤
31, 2nfan 1900 . . . . 5 𝑤(𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤)
4 simpll 766 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ*)
5 simpr 484 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
6 rspa 3221 . . . . . . 7 ((∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
76adantll 714 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
8 ssel2 3924 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
98ad4ant13 751 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦 ∈ ℝ*)
10 simpllr 775 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ)
1110rexrd 11157 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ*)
12 simpr 484 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦 < 𝑤)
139, 11, 12xrltled 13044 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦𝑤)
1413ex 412 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 < 𝑤𝑦𝑤))
1514reximdva 3145 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (∃𝑦𝐴 𝑦 < 𝑤 → ∃𝑦𝐴 𝑦𝑤))
1615imp 406 . . . . . 6 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ ∃𝑦𝐴 𝑦 < 𝑤) → ∃𝑦𝐴 𝑦𝑤)
174, 5, 7, 16syl21anc 837 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦𝑤)
183, 17ralrimia 3231 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦𝑤)
19 breq2 5090 . . . . . 6 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
2019rexbidv 3156 . . . . 5 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑦𝑤 ↔ ∃𝑦𝐴 𝑦𝑥))
2120cbvralvw 3210 . . . 4 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
2218, 21sylib 218 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
2322ex 412 . 2 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
24 simpll 766 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ*)
25 simpr 484 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
26 peano2rem 11423 . . . . . . . 8 (𝑤 ∈ ℝ → (𝑤 − 1) ∈ ℝ)
2726adantl 481 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → (𝑤 − 1) ∈ ℝ)
28 simpl 482 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
29 breq2 5090 . . . . . . . . 9 (𝑥 = (𝑤 − 1) → (𝑦𝑥𝑦 ≤ (𝑤 − 1)))
3029rexbidv 3156 . . . . . . . 8 (𝑥 = (𝑤 − 1) → (∃𝑦𝐴 𝑦𝑥 ↔ ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1)))
3130rspcva 3570 . . . . . . 7 (((𝑤 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
3227, 28, 31syl2anc 584 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
3332adantll 714 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
348ad4ant13 751 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ∈ ℝ*)
35 simpllr 775 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ)
3626rexrd 11157 . . . . . . . . . 10 (𝑤 ∈ ℝ → (𝑤 − 1) ∈ ℝ*)
3735, 36syl 17 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) ∈ ℝ*)
3835rexrd 11157 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ*)
39 simpr 484 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ≤ (𝑤 − 1))
4035ltm1d 12049 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) < 𝑤)
4134, 37, 38, 39, 40xrlelttrd 13054 . . . . . . . 8 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 < 𝑤)
4241ex 412 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ≤ (𝑤 − 1) → 𝑦 < 𝑤))
4342reximdva 3145 . . . . . 6 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (∃𝑦𝐴 𝑦 ≤ (𝑤 − 1) → ∃𝑦𝐴 𝑦 < 𝑤))
4443imp 406 . . . . 5 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1)) → ∃𝑦𝐴 𝑦 < 𝑤)
4524, 25, 33, 44syl21anc 837 . . . 4 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
4645ralrimiva 3124 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤)
4746ex 412 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤))
4823, 47impbid 212 1 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3897   class class class wbr 5086  (class class class)co 7341  cr 11000  1c1 11002  *cxr 11140   < clt 11141  cle 11142  cmin 11339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342
This theorem is referenced by:  infxrunb3  45462
  Copyright terms: Public domain W3C validator