Proof of Theorem unb2ltle
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑤 𝐴 ⊆
ℝ* |
| 2 | | nfra1 3270 |
. . . . . 6
⊢
Ⅎ𝑤∀𝑤 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑤 |
| 3 | 1, 2 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑤(𝐴 ⊆ ℝ*
∧ ∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑤) |
| 4 | | simpll 766 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ ∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆
ℝ*) |
| 5 | | simpr 484 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ ∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) |
| 6 | | rspa 3235 |
. . . . . . 7
⊢
((∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑤 ∧ 𝑤 ∈ ℝ) → ∃𝑦 ∈ 𝐴 𝑦 < 𝑤) |
| 7 | 6 | adantll 714 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ ∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦 ∈ 𝐴 𝑦 < 𝑤) |
| 8 | | ssel2 3958 |
. . . . . . . . . . 11
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
| 9 | 8 | ad4ant13 751 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 < 𝑤) → 𝑦 ∈ ℝ*) |
| 10 | | simpllr 775 |
. . . . . . . . . . 11
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ) |
| 11 | 10 | rexrd 11290 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ*) |
| 12 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 < 𝑤) → 𝑦 < 𝑤) |
| 13 | 9, 11, 12 | xrltled 13171 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 < 𝑤) → 𝑦 ≤ 𝑤) |
| 14 | 13 | ex 412 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) → (𝑦 < 𝑤 → 𝑦 ≤ 𝑤)) |
| 15 | 14 | reximdva 3154 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
→ (∃𝑦 ∈
𝐴 𝑦 < 𝑤 → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑤)) |
| 16 | 15 | imp 406 |
. . . . . 6
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ ∃𝑦 ∈ 𝐴 𝑦 < 𝑤) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑤) |
| 17 | 4, 5, 7, 16 | syl21anc 837 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ ∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑤) |
| 18 | 3, 17 | ralrimia 3245 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑤) → ∀𝑤 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑤) |
| 19 | | breq2 5128 |
. . . . . 6
⊢ (𝑤 = 𝑥 → (𝑦 ≤ 𝑤 ↔ 𝑦 ≤ 𝑥)) |
| 20 | 19 | rexbidv 3165 |
. . . . 5
⊢ (𝑤 = 𝑥 → (∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑤 ↔ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
| 21 | 20 | cbvralvw 3224 |
. . . 4
⊢
(∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 22 | 18, 21 | sylib 218 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑤) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 23 | 22 | ex 412 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑤 → ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |
| 24 | | simpll 766 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆
ℝ*) |
| 25 | | simpr 484 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ) |
| 26 | | peano2rem 11555 |
. . . . . . . 8
⊢ (𝑤 ∈ ℝ → (𝑤 − 1) ∈
ℝ) |
| 27 | 26 | adantl 481 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ∧ 𝑤 ∈ ℝ) → (𝑤 − 1) ∈ ℝ) |
| 28 | | simpl 482 |
. . . . . . 7
⊢
((∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ∧ 𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 29 | | breq2 5128 |
. . . . . . . . 9
⊢ (𝑥 = (𝑤 − 1) → (𝑦 ≤ 𝑥 ↔ 𝑦 ≤ (𝑤 − 1))) |
| 30 | 29 | rexbidv 3165 |
. . . . . . . 8
⊢ (𝑥 = (𝑤 − 1) → (∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ↔ ∃𝑦 ∈ 𝐴 𝑦 ≤ (𝑤 − 1))) |
| 31 | 30 | rspcva 3604 |
. . . . . . 7
⊢ (((𝑤 − 1) ∈ ℝ ∧
∀𝑥 ∈ ℝ
∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑦 ∈ 𝐴 𝑦 ≤ (𝑤 − 1)) |
| 32 | 27, 28, 31 | syl2anc 584 |
. . . . . 6
⊢
((∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥 ∧ 𝑤 ∈ ℝ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ (𝑤 − 1)) |
| 33 | 32 | adantll 714 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦 ∈ 𝐴 𝑦 ≤ (𝑤 − 1)) |
| 34 | 8 | ad4ant13 751 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ∈ ℝ*) |
| 35 | | simpllr 775 |
. . . . . . . . . 10
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ) |
| 36 | 26 | rexrd 11290 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ℝ → (𝑤 − 1) ∈
ℝ*) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) ∈
ℝ*) |
| 38 | 35 | rexrd 11290 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ*) |
| 39 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ≤ (𝑤 − 1)) |
| 40 | 35 | ltm1d 12179 |
. . . . . . . . 9
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) < 𝑤) |
| 41 | 34, 37, 38, 39, 40 | xrlelttrd 13181 |
. . . . . . . 8
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 < 𝑤) |
| 42 | 41 | ex 412 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ 𝑦 ∈ 𝐴) → (𝑦 ≤ (𝑤 − 1) → 𝑦 < 𝑤)) |
| 43 | 42 | reximdva 3154 |
. . . . . 6
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
→ (∃𝑦 ∈
𝐴 𝑦 ≤ (𝑤 − 1) → ∃𝑦 ∈ 𝐴 𝑦 < 𝑤)) |
| 44 | 43 | imp 406 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑤 ∈ ℝ)
∧ ∃𝑦 ∈ 𝐴 𝑦 ≤ (𝑤 − 1)) → ∃𝑦 ∈ 𝐴 𝑦 < 𝑤) |
| 45 | 24, 25, 33, 44 | syl21anc 837 |
. . . 4
⊢ (((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦 ∈ 𝐴 𝑦 < 𝑤) |
| 46 | 45 | ralrimiva 3133 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ ∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥) → ∀𝑤 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑤) |
| 47 | 46 | ex 412 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑥 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 ≤ 𝑥 → ∀𝑤 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 < 𝑤)) |
| 48 | 23, 47 | impbid 212 |
1
⊢ (𝐴 ⊆ ℝ*
→ (∀𝑤 ∈
ℝ ∃𝑦 ∈
𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥)) |