Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unb2ltle Structured version   Visualization version   GIF version

Theorem unb2ltle 43736
Description: "Unbounded below" expressed with < and with . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
unb2ltle (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
Distinct variable group:   𝑤,𝐴,𝑥,𝑦

Proof of Theorem unb2ltle
StepHypRef Expression
1 nfv 1918 . . . . . 6 𝑤 𝐴 ⊆ ℝ*
2 nfra1 3266 . . . . . 6 𝑤𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤
31, 2nfan 1903 . . . . 5 𝑤(𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤)
4 simpll 766 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ*)
5 simpr 486 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
6 rspa 3230 . . . . . . 7 ((∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
76adantll 713 . . . . . 6 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
8 ssel2 3940 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
98ad4ant13 750 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦 ∈ ℝ*)
10 simpllr 775 . . . . . . . . . . 11 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ)
1110rexrd 11210 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑤 ∈ ℝ*)
12 simpr 486 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦 < 𝑤)
139, 11, 12xrltled 13075 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 < 𝑤) → 𝑦𝑤)
1413ex 414 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 < 𝑤𝑦𝑤))
1514reximdva 3162 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (∃𝑦𝐴 𝑦 < 𝑤 → ∃𝑦𝐴 𝑦𝑤))
1615imp 408 . . . . . 6 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ ∃𝑦𝐴 𝑦 < 𝑤) → ∃𝑦𝐴 𝑦𝑤)
174, 5, 7, 16syl21anc 837 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦𝑤)
183, 17ralrimia 3240 . . . 4 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦𝑤)
19 breq2 5110 . . . . . 6 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
2019rexbidv 3172 . . . . 5 (𝑤 = 𝑥 → (∃𝑦𝐴 𝑦𝑤 ↔ ∃𝑦𝐴 𝑦𝑥))
2120cbvralvw 3224 . . . 4 (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
2218, 21sylib 217 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
2322ex 414 . 2 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
24 simpll 766 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → 𝐴 ⊆ ℝ*)
25 simpr 486 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
26 peano2rem 11473 . . . . . . . 8 (𝑤 ∈ ℝ → (𝑤 − 1) ∈ ℝ)
2726adantl 483 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → (𝑤 − 1) ∈ ℝ)
28 simpl 484 . . . . . . 7 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥)
29 breq2 5110 . . . . . . . . 9 (𝑥 = (𝑤 − 1) → (𝑦𝑥𝑦 ≤ (𝑤 − 1)))
3029rexbidv 3172 . . . . . . . 8 (𝑥 = (𝑤 − 1) → (∃𝑦𝐴 𝑦𝑥 ↔ ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1)))
3130rspcva 3578 . . . . . . 7 (((𝑤 − 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
3227, 28, 31syl2anc 585 . . . . . 6 ((∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
3332adantll 713 . . . . 5 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1))
348ad4ant13 750 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ∈ ℝ*)
35 simpllr 775 . . . . . . . . . 10 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ)
3626rexrd 11210 . . . . . . . . . 10 (𝑤 ∈ ℝ → (𝑤 − 1) ∈ ℝ*)
3735, 36syl 17 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) ∈ ℝ*)
3835rexrd 11210 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑤 ∈ ℝ*)
39 simpr 486 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 ≤ (𝑤 − 1))
4035ltm1d 12092 . . . . . . . . 9 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → (𝑤 − 1) < 𝑤)
4134, 37, 38, 39, 40xrlelttrd 13085 . . . . . . . 8 ((((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) ∧ 𝑦 ≤ (𝑤 − 1)) → 𝑦 < 𝑤)
4241ex 414 . . . . . . 7 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ 𝑦𝐴) → (𝑦 ≤ (𝑤 − 1) → 𝑦 < 𝑤))
4342reximdva 3162 . . . . . 6 ((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) → (∃𝑦𝐴 𝑦 ≤ (𝑤 − 1) → ∃𝑦𝐴 𝑦 < 𝑤))
4443imp 408 . . . . 5 (((𝐴 ⊆ ℝ*𝑤 ∈ ℝ) ∧ ∃𝑦𝐴 𝑦 ≤ (𝑤 − 1)) → ∃𝑦𝐴 𝑦 < 𝑤)
4524, 25, 33, 44syl21anc 837 . . . 4 (((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) ∧ 𝑤 ∈ ℝ) → ∃𝑦𝐴 𝑦 < 𝑤)
4645ralrimiva 3140 . . 3 ((𝐴 ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥) → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤)
4746ex 414 . 2 (𝐴 ⊆ ℝ* → (∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥 → ∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤))
4823, 47impbid 211 1 (𝐴 ⊆ ℝ* → (∀𝑤 ∈ ℝ ∃𝑦𝐴 𝑦 < 𝑤 ↔ ∀𝑥 ∈ ℝ ∃𝑦𝐴 𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061  wrex 3070  wss 3911   class class class wbr 5106  (class class class)co 7358  cr 11055  1c1 11057  *cxr 11193   < clt 11194  cle 11195  cmin 11390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393
This theorem is referenced by:  infxrunb3  43745
  Copyright terms: Public domain W3C validator