Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvid2 Structured version   Visualization version   GIF version

Theorem resvid2 31067
Description: General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (𝑊v 𝐴)
resvsca.f 𝐹 = (Scalar‘𝑊)
resvsca.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
resvid2 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)

Proof of Theorem resvid2
StepHypRef Expression
1 resvsca.r . . . 4 𝑅 = (𝑊v 𝐴)
2 resvsca.f . . . 4 𝐹 = (Scalar‘𝑊)
3 resvsca.b . . . 4 𝐵 = (Base‘𝐹)
41, 2, 3resvval 31066 . . 3 ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
5 iftrue 4430 . . 3 (𝐵𝐴 → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) = 𝑊)
64, 5sylan9eqr 2816 . 2 ((𝐵𝐴 ∧ (𝑊𝑋𝐴𝑌)) → 𝑅 = 𝑊)
763impb 1113 1 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1085   = wceq 1539  wcel 2112  wss 3861  ifcif 4424  cop 4532  cfv 6341  (class class class)co 7157  ndxcnx 16553   sSet csts 16554  Basecbs 16556  s cress 16557  Scalarcsca 16641  v cresv 31063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3700  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-opab 5100  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-iota 6300  df-fun 6343  df-fv 6349  df-ov 7160  df-oprab 7161  df-mpo 7162  df-resv 31064
This theorem is referenced by:  resvsca  31069  resvlem  31070
  Copyright terms: Public domain W3C validator