![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > resvid2 | Structured version Visualization version GIF version |
Description: General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
Ref | Expression |
---|---|
resvsca.r | β’ π = (π βΎv π΄) |
resvsca.f | β’ πΉ = (Scalarβπ) |
resvsca.b | β’ π΅ = (BaseβπΉ) |
Ref | Expression |
---|---|
resvid2 | β’ ((π΅ β π΄ β§ π β π β§ π΄ β π) β π = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvsca.r | . . . 4 β’ π = (π βΎv π΄) | |
2 | resvsca.f | . . . 4 β’ πΉ = (Scalarβπ) | |
3 | resvsca.b | . . . 4 β’ π΅ = (BaseβπΉ) | |
4 | 1, 2, 3 | resvval 32472 | . . 3 β’ ((π β π β§ π΄ β π) β π = if(π΅ β π΄, π, (π sSet β¨(Scalarβndx), (πΉ βΎs π΄)β©))) |
5 | iftrue 4535 | . . 3 β’ (π΅ β π΄ β if(π΅ β π΄, π, (π sSet β¨(Scalarβndx), (πΉ βΎs π΄)β©)) = π) | |
6 | 4, 5 | sylan9eqr 2795 | . 2 β’ ((π΅ β π΄ β§ (π β π β§ π΄ β π)) β π = π) |
7 | 6 | 3impb 1116 | 1 β’ ((π΅ β π΄ β§ π β π β§ π΄ β π) β π = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β wss 3949 ifcif 4529 β¨cop 4635 βcfv 6544 (class class class)co 7409 sSet csts 17096 ndxcnx 17126 Basecbs 17144 βΎs cress 17173 Scalarcsca 17200 βΎv cresv 32469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-resv 32470 |
This theorem is referenced by: resvsca 32475 resvlem 32476 resvlemOLD 32477 |
Copyright terms: Public domain | W3C validator |