Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvid2 Structured version   Visualization version   GIF version

Theorem resvid2 32473
Description: General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (π‘Š β†Ύv 𝐴)
resvsca.f 𝐹 = (Scalarβ€˜π‘Š)
resvsca.b 𝐡 = (Baseβ€˜πΉ)
Assertion
Ref Expression
resvid2 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ 𝑅 = π‘Š)

Proof of Theorem resvid2
StepHypRef Expression
1 resvsca.r . . . 4 𝑅 = (π‘Š β†Ύv 𝐴)
2 resvsca.f . . . 4 𝐹 = (Scalarβ€˜π‘Š)
3 resvsca.b . . . 4 𝐡 = (Baseβ€˜πΉ)
41, 2, 3resvval 32472 . . 3 ((π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ 𝑅 = if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Scalarβ€˜ndx), (𝐹 β†Ύs 𝐴)⟩)))
5 iftrue 4535 . . 3 (𝐡 βŠ† 𝐴 β†’ if(𝐡 βŠ† 𝐴, π‘Š, (π‘Š sSet ⟨(Scalarβ€˜ndx), (𝐹 β†Ύs 𝐴)⟩)) = π‘Š)
64, 5sylan9eqr 2795 . 2 ((𝐡 βŠ† 𝐴 ∧ (π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ)) β†’ 𝑅 = π‘Š)
763impb 1116 1 ((𝐡 βŠ† 𝐴 ∧ π‘Š ∈ 𝑋 ∧ 𝐴 ∈ π‘Œ) β†’ 𝑅 = π‘Š)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   βŠ† wss 3949  ifcif 4529  βŸ¨cop 4635  β€˜cfv 6544  (class class class)co 7409   sSet csts 17096  ndxcnx 17126  Basecbs 17144   β†Ύs cress 17173  Scalarcsca 17200   β†Ύv cresv 32469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-resv 32470
This theorem is referenced by:  resvsca  32475  resvlem  32476  resvlemOLD  32477
  Copyright terms: Public domain W3C validator