Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resvid2 | Structured version Visualization version GIF version |
Description: General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
Ref | Expression |
---|---|
resvsca.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
resvsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
resvsca.b | ⊢ 𝐵 = (Base‘𝐹) |
Ref | Expression |
---|---|
resvid2 | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvsca.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
2 | resvsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | resvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
4 | 1, 2, 3 | resvval 31066 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |
5 | iftrue 4430 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) = 𝑊) | |
6 | 4, 5 | sylan9eqr 2816 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ (𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → 𝑅 = 𝑊) |
7 | 6 | 3impb 1113 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ⊆ wss 3861 ifcif 4424 〈cop 4532 ‘cfv 6341 (class class class)co 7157 ndxcnx 16553 sSet csts 16554 Basecbs 16556 ↾s cress 16557 Scalarcsca 16641 ↾v cresv 31063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-iota 6300 df-fun 6343 df-fv 6349 df-ov 7160 df-oprab 7161 df-mpo 7162 df-resv 31064 |
This theorem is referenced by: resvsca 31069 resvlem 31070 |
Copyright terms: Public domain | W3C validator |