Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > resvid2 | Structured version Visualization version GIF version |
Description: General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
Ref | Expression |
---|---|
resvsca.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
resvsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
resvsca.b | ⊢ 𝐵 = (Base‘𝐹) |
Ref | Expression |
---|---|
resvid2 | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resvsca.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
2 | resvsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | resvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
4 | 1, 2, 3 | resvval 31428 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |
5 | iftrue 4462 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) = 𝑊) | |
6 | 4, 5 | sylan9eqr 2801 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ (𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → 𝑅 = 𝑊) |
7 | 6 | 3impb 1113 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ifcif 4456 〈cop 4564 ‘cfv 6418 (class class class)co 7255 sSet csts 16792 ndxcnx 16822 Basecbs 16840 ↾s cress 16867 Scalarcsca 16891 ↾v cresv 31425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-resv 31426 |
This theorem is referenced by: resvsca 31431 resvlem 31432 resvlemOLD 31433 |
Copyright terms: Public domain | W3C validator |