Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resvid2 Structured version   Visualization version   GIF version

Theorem resvid2 31429
Description: General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
resvsca.r 𝑅 = (𝑊v 𝐴)
resvsca.f 𝐹 = (Scalar‘𝑊)
resvsca.b 𝐵 = (Base‘𝐹)
Assertion
Ref Expression
resvid2 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)

Proof of Theorem resvid2
StepHypRef Expression
1 resvsca.r . . . 4 𝑅 = (𝑊v 𝐴)
2 resvsca.f . . . 4 𝐹 = (Scalar‘𝑊)
3 resvsca.b . . . 4 𝐵 = (Base‘𝐹)
41, 2, 3resvval 31428 . . 3 ((𝑊𝑋𝐴𝑌) → 𝑅 = if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)))
5 iftrue 4462 . . 3 (𝐵𝐴 → if(𝐵𝐴, 𝑊, (𝑊 sSet ⟨(Scalar‘ndx), (𝐹s 𝐴)⟩)) = 𝑊)
64, 5sylan9eqr 2801 . 2 ((𝐵𝐴 ∧ (𝑊𝑋𝐴𝑌)) → 𝑅 = 𝑊)
763impb 1113 1 ((𝐵𝐴𝑊𝑋𝐴𝑌) → 𝑅 = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  ifcif 4456  cop 4564  cfv 6418  (class class class)co 7255   sSet csts 16792  ndxcnx 16822  Basecbs 16840  s cress 16867  Scalarcsca 16891  v cresv 31425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-resv 31426
This theorem is referenced by:  resvsca  31431  resvlem  31432  resvlemOLD  31433
  Copyright terms: Public domain W3C validator