| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resvid2 | Structured version Visualization version GIF version | ||
| Description: General behavior of trivial restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| Ref | Expression |
|---|---|
| resvsca.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
| resvsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| resvsca.b | ⊢ 𝐵 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| resvid2 | ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvsca.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
| 2 | resvsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | resvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 1, 2, 3 | resvval 33274 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |
| 5 | iftrue 4490 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) = 𝑊) | |
| 6 | 4, 5 | sylan9eqr 2786 | . 2 ⊢ ((𝐵 ⊆ 𝐴 ∧ (𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → 𝑅 = 𝑊) |
| 7 | 6 | 3impb 1114 | 1 ⊢ ((𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 ifcif 4484 〈cop 4591 ‘cfv 6499 (class class class)co 7369 sSet csts 17109 ndxcnx 17139 Basecbs 17155 ↾s cress 17176 Scalarcsca 17199 ↾v cresv 33271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-resv 33272 |
| This theorem is referenced by: resvsca 33277 resvlem 33278 |
| Copyright terms: Public domain | W3C validator |