|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resvval2 | Structured version Visualization version GIF version | ||
| Description: Value of nontrivial structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| resvsca.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) | 
| resvsca.f | ⊢ 𝐹 = (Scalar‘𝑊) | 
| resvsca.b | ⊢ 𝐵 = (Base‘𝐹) | 
| Ref | Expression | 
|---|---|
| resvval2 | ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resvsca.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
| 2 | resvsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | resvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 1, 2, 3 | resvval 33354 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) | 
| 5 | iffalse 4533 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) | |
| 6 | 4, 5 | sylan9eqr 2798 | . 2 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ (𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) | 
| 7 | 6 | 3impb 1114 | 1 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 ifcif 4524 〈cop 4631 ‘cfv 6560 (class class class)co 7432 sSet csts 17201 ndxcnx 17231 Basecbs 17248 ↾s cress 17275 Scalarcsca 17301 ↾v cresv 33351 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-resv 33352 | 
| This theorem is referenced by: resvsca 33357 resvlem 33358 resvlemOLD 33359 | 
| Copyright terms: Public domain | W3C validator |