| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resvval2 | Structured version Visualization version GIF version | ||
| Description: Value of nontrivial structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| Ref | Expression |
|---|---|
| resvsca.r | ⊢ 𝑅 = (𝑊 ↾v 𝐴) |
| resvsca.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| resvsca.b | ⊢ 𝐵 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| resvval2 | ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resvsca.r | . . . 4 ⊢ 𝑅 = (𝑊 ↾v 𝐴) | |
| 2 | resvsca.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | resvsca.b | . . . 4 ⊢ 𝐵 = (Base‘𝐹) | |
| 4 | 1, 2, 3 | resvval 33292 | . . 3 ⊢ ((𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉))) |
| 5 | iffalse 4484 | . . 3 ⊢ (¬ 𝐵 ⊆ 𝐴 → if(𝐵 ⊆ 𝐴, 𝑊, (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) | |
| 6 | 4, 5 | sylan9eqr 2788 | . 2 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ (𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌)) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) |
| 7 | 6 | 3impb 1114 | 1 ⊢ ((¬ 𝐵 ⊆ 𝐴 ∧ 𝑊 ∈ 𝑋 ∧ 𝐴 ∈ 𝑌) → 𝑅 = (𝑊 sSet 〈(Scalar‘ndx), (𝐹 ↾s 𝐴)〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ifcif 4475 〈cop 4582 ‘cfv 6481 (class class class)co 7346 sSet csts 17074 ndxcnx 17104 Basecbs 17120 ↾s cress 17141 Scalarcsca 17164 ↾v cresv 33289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-resv 33290 |
| This theorem is referenced by: resvsca 33295 resvlem 33296 |
| Copyright terms: Public domain | W3C validator |