![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringcomlem | Structured version Visualization version GIF version |
Description: Lemma for ringcom 20179. This (formerly) part of the proof for ringcom 20179 is also applicable for semirings (without using the commutativity of the addition given per definition of a semiring), see srgcom4lem 20118. (Contributed by GΓ©rard Lang, 4-Dec-2014.) Variant of rglcom4d 20116 for rings. (Revised by AV, 5-Feb-2025.) |
Ref | Expression |
---|---|
ringacl.b | β’ π΅ = (Baseβπ ) |
ringacl.p | β’ + = (+gβπ ) |
Ref | Expression |
---|---|
ringcomlem | β’ ((π β Ring β§ π β π΅ β§ π β π΅) β ((π + π) + (π + π)) = ((π + π) + (π + π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringacl.b | . . . . 5 β’ π΅ = (Baseβπ ) | |
2 | ringacl.p | . . . . 5 β’ + = (+gβπ ) | |
3 | eqid 2726 | . . . . 5 β’ (.rβπ ) = (.rβπ ) | |
4 | 1, 2, 3 | ringdir 20164 | . . . 4 β’ ((π β Ring β§ (π₯ β π΅ β§ π¦ β π΅ β§ π§ β π΅)) β ((π₯ + π¦)(.rβπ )π§) = ((π₯(.rβπ )π§) + (π¦(.rβπ )π§))) |
5 | 4 | ralrimivvva 3197 | . . 3 β’ (π β Ring β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ + π¦)(.rβπ )π§) = ((π₯(.rβπ )π§) + (π¦(.rβπ )π§))) |
6 | 5 | 3ad2ant1 1130 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π΅) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ ((π₯ + π¦)(.rβπ )π§) = ((π₯(.rβπ )π§) + (π¦(.rβπ )π§))) |
7 | eqid 2726 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
8 | 1, 7 | ringidcl 20165 | . . 3 β’ (π β Ring β (1rβπ ) β π΅) |
9 | 8 | 3ad2ant1 1130 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π΅) β (1rβπ ) β π΅) |
10 | 1, 3, 7 | ringlidm 20168 | . . . 4 β’ ((π β Ring β§ π₯ β π΅) β ((1rβπ )(.rβπ )π₯) = π₯) |
11 | 10 | ralrimiva 3140 | . . 3 β’ (π β Ring β βπ₯ β π΅ ((1rβπ )(.rβπ )π₯) = π₯) |
12 | 11 | 3ad2ant1 1130 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π΅) β βπ₯ β π΅ ((1rβπ )(.rβπ )π₯) = π₯) |
13 | simp2 1134 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π΅) β π β π΅) | |
14 | 1, 2 | ringacl 20177 | . . . . 5 β’ ((π β Ring β§ π₯ β π΅ β§ π¦ β π΅) β (π₯ + π¦) β π΅) |
15 | 14 | 3expb 1117 | . . . 4 β’ ((π β Ring β§ (π₯ β π΅ β§ π¦ β π΅)) β (π₯ + π¦) β π΅) |
16 | 15 | ralrimivva 3194 | . . 3 β’ (π β Ring β βπ₯ β π΅ βπ¦ β π΅ (π₯ + π¦) β π΅) |
17 | 16 | 3ad2ant1 1130 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π΅) β βπ₯ β π΅ βπ¦ β π΅ (π₯ + π¦) β π΅) |
18 | 1, 2, 3 | ringdi 20163 | . . . 4 β’ ((π β Ring β§ (π₯ β π΅ β§ π¦ β π΅ β§ π§ β π΅)) β (π₯(.rβπ )(π¦ + π§)) = ((π₯(.rβπ )π¦) + (π₯(.rβπ )π§))) |
19 | 18 | ralrimivvva 3197 | . . 3 β’ (π β Ring β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯(.rβπ )(π¦ + π§)) = ((π₯(.rβπ )π¦) + (π₯(.rβπ )π§))) |
20 | 19 | 3ad2ant1 1130 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π΅) β βπ₯ β π΅ βπ¦ β π΅ βπ§ β π΅ (π₯(.rβπ )(π¦ + π§)) = ((π₯(.rβπ )π¦) + (π₯(.rβπ )π§))) |
21 | simp3 1135 | . 2 β’ ((π β Ring β§ π β π΅ β§ π β π΅) β π β π΅) | |
22 | 6, 9, 12, 13, 17, 20, 21 | rglcom4d 20116 | 1 β’ ((π β Ring β§ π β π΅ β§ π β π΅) β ((π + π) + (π + π)) = ((π + π) + (π + π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βwral 3055 βcfv 6537 (class class class)co 7405 Basecbs 17153 +gcplusg 17206 .rcmulr 17207 1rcur 20086 Ringcrg 20138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-mgp 20040 df-ur 20087 df-ring 20140 |
This theorem is referenced by: ringcom 20179 |
Copyright terms: Public domain | W3C validator |