|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ringcomlem | Structured version Visualization version GIF version | ||
| Description: Lemma for ringcom 20278. This (formerly) part of the proof for ringcom 20278 is also applicable for semirings (without using the commutativity of the addition given per definition of a semiring), see srgcom4lem 20211. (Contributed by Gérard Lang, 4-Dec-2014.) Variant of rglcom4d 20209 for rings. (Revised by AV, 5-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| ringacl.b | ⊢ 𝐵 = (Base‘𝑅) | 
| ringacl.p | ⊢ + = (+g‘𝑅) | 
| Ref | Expression | 
|---|---|
| ringcomlem | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ringacl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | ringacl.p | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | 1, 2, 3 | ringdir 20260 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) | 
| 5 | 4 | ralrimivvva 3204 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) | 
| 6 | 5 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧) + (𝑦(.r‘𝑅)𝑧))) | 
| 7 | eqid 2736 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 8 | 1, 7 | ringidcl 20263 | . . 3 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ 𝐵) | 
| 9 | 8 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (1r‘𝑅) ∈ 𝐵) | 
| 10 | 1, 3, 7 | ringlidm 20267 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) | 
| 11 | 10 | ralrimiva 3145 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ 𝐵 ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) | 
| 12 | 11 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ((1r‘𝑅)(.r‘𝑅)𝑥) = 𝑥) | 
| 13 | simp2 1137 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 14 | 1, 2 | ringacl 20276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) ∈ 𝐵) | 
| 15 | 14 | 3expb 1120 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥 + 𝑦) ∈ 𝐵) | 
| 16 | 15 | ralrimivva 3201 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) | 
| 17 | 16 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) ∈ 𝐵) | 
| 18 | 1, 2, 3 | ringdi 20259 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) | 
| 19 | 18 | ralrimivvva 3204 | . . 3 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) | 
| 20 | 19 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 (𝑥(.r‘𝑅)(𝑦 + 𝑧)) = ((𝑥(.r‘𝑅)𝑦) + (𝑥(.r‘𝑅)𝑧))) | 
| 21 | simp3 1138 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 22 | 6, 9, 12, 13, 17, 20, 21 | rglcom4d 20209 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑋) + (𝑌 + 𝑌)) = ((𝑋 + 𝑌) + (𝑋 + 𝑌))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 .rcmulr 17299 1rcur 20179 Ringcrg 20231 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-mgp 20139 df-ur 20180 df-ring 20233 | 
| This theorem is referenced by: ringcom 20278 | 
| Copyright terms: Public domain | W3C validator |