MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubr Structured version   Visualization version   GIF version

Theorem cntzsubr 19680
Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
cntzsubr.b 𝐵 = (Base‘𝑅)
cntzsubr.m 𝑀 = (mulGrp‘𝑅)
cntzsubr.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubr ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))

Proof of Theorem cntzsubr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzsubr.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
2 cntzsubr.b . . . . . 6 𝐵 = (Base‘𝑅)
31, 2mgpbas 19357 . . . . 5 𝐵 = (Base‘𝑀)
4 cntzsubr.z . . . . 5 𝑍 = (Cntz‘𝑀)
53, 4cntzssv 18569 . . . 4 (𝑍𝑆) ⊆ 𝐵
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
7 simpll 767 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
8 ssel2 3870 . . . . . . . . 9 ((𝑆𝐵𝑧𝑆) → 𝑧𝐵)
98adantll 714 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑧𝐵)
10 eqid 2738 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
11 eqid 2738 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
122, 10, 11ringlz 19452 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑧𝐵) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
137, 9, 12syl2anc 587 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
142, 10, 11ringrz 19453 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑧𝐵) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
157, 9, 14syl2anc 587 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
1613, 15eqtr4d 2776 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
1716ralrimiva 3096 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
18 simpr 488 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → 𝑆𝐵)
192, 11ring0cl 19434 . . . . . . 7 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
2019adantr 484 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (0g𝑅) ∈ 𝐵)
211, 10mgpplusg 19355 . . . . . . 7 (.r𝑅) = (+g𝑀)
223, 21, 4cntzel 18564 . . . . . 6 ((𝑆𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2318, 20, 22syl2anc 587 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2417, 23mpbird 260 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (0g𝑅) ∈ (𝑍𝑆))
2524ne0d 4222 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ≠ ∅)
26 simpl2 1193 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
27 simpr 488 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝑆)
2821, 4cntzi 18570 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
2926, 27, 28syl2anc 587 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
30 simpl3 1194 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦 ∈ (𝑍𝑆))
3121, 4cntzi 18570 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3230, 27, 31syl2anc 587 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3329, 32oveq12d 7182 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
34 simpl1l 1225 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
355, 26sseldi 3873 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
365, 30sseldi 3873 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦𝐵)
37 simp1r 1199 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑆𝐵)
3837sselda 3875 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
39 eqid 2738 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
402, 39, 10ringdir 19432 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
4134, 35, 36, 38, 40syl13anc 1373 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
422, 39, 10ringdi 19431 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑧𝐵𝑥𝐵𝑦𝐵)) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4334, 38, 35, 36, 42syl13anc 1373 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4433, 41, 433eqtr4d 2783 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
4544ralrimiva 3096 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
46 simp1l 1198 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑅 ∈ Ring)
47 simp2 1138 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
485, 47sseldi 3873 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥𝐵)
49 simp3 1139 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦 ∈ (𝑍𝑆))
505, 49sseldi 3873 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦𝐵)
512, 39ringacl 19443 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
5246, 48, 50, 51syl3anc 1372 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
533, 21, 4cntzel 18564 . . . . . . . . 9 ((𝑆𝐵 ∧ (𝑥(+g𝑅)𝑦) ∈ 𝐵) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5437, 52, 53syl2anc 587 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5545, 54mpbird 260 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
56553expa 1119 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5756ralrimiva 3096 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5828adantll 714 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
5958fveq2d 6672 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((invg𝑅)‘(𝑥(.r𝑅)𝑧)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
60 eqid 2738 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
61 simplll 775 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
62 simplr 769 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
635, 62sseldi 3873 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
64 simplr 769 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑆𝐵)
6564sselda 3875 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
662, 10, 60, 61, 63, 65ringmneg1 19461 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = ((invg𝑅)‘(𝑥(.r𝑅)𝑧)))
672, 10, 60, 61, 65, 63ringmneg2 19462 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)((invg𝑅)‘𝑥)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
6859, 66, 673eqtr4d 2783 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
6968ralrimiva 3096 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
70 ringgrp 19414 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7170ad2antrr 726 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑅 ∈ Grp)
72 simpr 488 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
735, 72sseldi 3873 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥𝐵)
742, 60grpinvcl 18262 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐵) → ((invg𝑅)‘𝑥) ∈ 𝐵)
7571, 73, 74syl2anc 587 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ 𝐵)
763, 21, 4cntzel 18564 . . . . . . 7 ((𝑆𝐵 ∧ ((invg𝑅)‘𝑥) ∈ 𝐵) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7764, 75, 76syl2anc 587 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7869, 77mpbird 260 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ (𝑍𝑆))
7957, 78jca 515 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
8079ralrimiva 3096 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
8170adantr 484 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → 𝑅 ∈ Grp)
822, 39, 60issubg2 18405 . . . 4 (𝑅 ∈ Grp → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
8381, 82syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
846, 25, 80, 83mpbir3and 1343 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑅))
851ringmgp 19415 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
863, 4cntzsubm 18577 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
8785, 86sylan 583 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
881issubrg3 19675 . . 3 (𝑅 ∈ Ring → ((𝑍𝑆) ∈ (SubRing‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ (𝑍𝑆) ∈ (SubMnd‘𝑀))))
8988adantr 484 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubRing‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ (𝑍𝑆) ∈ (SubMnd‘𝑀))))
9084, 87, 89mpbir2and 713 1 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2113  wne 2934  wral 3053  wss 3841  c0 4209  cfv 6333  (class class class)co 7164  Basecbs 16579  +gcplusg 16661  .rcmulr 16662  0gc0g 16809  Mndcmnd 18020  SubMndcsubmnd 18064  Grpcgrp 18212  invgcminusg 18213  SubGrpcsubg 18384  Cntzccntz 18556  mulGrpcmgp 19351  Ringcrg 19409  SubRingcsubrg 19643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-rep 5151  ax-sep 5164  ax-nul 5171  ax-pow 5229  ax-pr 5293  ax-un 7473  ax-cnex 10664  ax-resscn 10665  ax-1cn 10666  ax-icn 10667  ax-addcl 10668  ax-addrcl 10669  ax-mulcl 10670  ax-mulrcl 10671  ax-mulcom 10672  ax-addass 10673  ax-mulass 10674  ax-distr 10675  ax-i2m1 10676  ax-1ne0 10677  ax-1rid 10678  ax-rnegex 10679  ax-rrecex 10680  ax-cnre 10681  ax-pre-lttri 10682  ax-pre-lttrn 10683  ax-pre-ltadd 10684  ax-pre-mulgt0 10685
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3399  df-sbc 3680  df-csb 3789  df-dif 3844  df-un 3846  df-in 3848  df-ss 3858  df-pss 3860  df-nul 4210  df-if 4412  df-pw 4487  df-sn 4514  df-pr 4516  df-tp 4518  df-op 4520  df-uni 4794  df-iun 4880  df-br 5028  df-opab 5090  df-mpt 5108  df-tr 5134  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7121  df-ov 7167  df-oprab 7168  df-mpo 7169  df-om 7594  df-wrecs 7969  df-recs 8030  df-rdg 8068  df-er 8313  df-en 8549  df-dom 8550  df-sdom 8551  df-pnf 10748  df-mnf 10749  df-xr 10750  df-ltxr 10751  df-le 10752  df-sub 10943  df-neg 10944  df-nn 11710  df-2 11772  df-3 11773  df-ndx 16582  df-slot 16583  df-base 16585  df-sets 16586  df-ress 16587  df-plusg 16674  df-mulr 16675  df-0g 16811  df-mgm 17961  df-sgrp 18010  df-mnd 18021  df-submnd 18066  df-grp 18215  df-minusg 18216  df-subg 18387  df-cntz 18558  df-mgp 19352  df-ur 19364  df-ring 19411  df-subrg 19645
This theorem is referenced by:  cntzsdrg  19693  cntrcrng  30891
  Copyright terms: Public domain W3C validator