| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cntzsubr.m | . . . . . 6
⊢ 𝑀 = (mulGrp‘𝑅) | 
| 2 |  | cntzsubr.b | . . . . . 6
⊢ 𝐵 = (Base‘𝑅) | 
| 3 | 1, 2 | mgpbas 20142 | . . . . 5
⊢ 𝐵 = (Base‘𝑀) | 
| 4 |  | cntzsubr.z | . . . . 5
⊢ 𝑍 = (Cntz‘𝑀) | 
| 5 | 3, 4 | cntzssv 19346 | . . . 4
⊢ (𝑍‘𝑆) ⊆ 𝐵 | 
| 6 | 5 | a1i 11 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ⊆ 𝐵) | 
| 7 |  | simpll 767 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑧 ∈ 𝑆) → 𝑅 ∈ Ring) | 
| 8 |  | ssel2 3978 | . . . . . . . . 9
⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝐵) | 
| 9 | 8 | adantll 714 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝐵) | 
| 10 |  | eqid 2737 | . . . . . . . . 9
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 11 |  | eqid 2737 | . . . . . . . . 9
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 12 | 2, 10, 11 | ringlz 20290 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐵) → ((0g‘𝑅)(.r‘𝑅)𝑧) = (0g‘𝑅)) | 
| 13 | 7, 9, 12 | syl2anc 584 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑧 ∈ 𝑆) → ((0g‘𝑅)(.r‘𝑅)𝑧) = (0g‘𝑅)) | 
| 14 | 2, 10, 11 | ringrz 20291 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐵) → (𝑧(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) | 
| 15 | 7, 9, 14 | syl2anc 584 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑧 ∈ 𝑆) → (𝑧(.r‘𝑅)(0g‘𝑅)) = (0g‘𝑅)) | 
| 16 | 13, 15 | eqtr4d 2780 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑧 ∈ 𝑆) → ((0g‘𝑅)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)(0g‘𝑅))) | 
| 17 | 16 | ralrimiva 3146 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → ∀𝑧 ∈ 𝑆 ((0g‘𝑅)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)(0g‘𝑅))) | 
| 18 |  | simpr 484 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ 𝐵) | 
| 19 | 2, 11 | ring0cl 20264 | . . . . . . 7
⊢ (𝑅 ∈ Ring →
(0g‘𝑅)
∈ 𝐵) | 
| 20 | 19 | adantr 480 | . . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (0g‘𝑅) ∈ 𝐵) | 
| 21 | 1, 10 | mgpplusg 20141 | . . . . . . 7
⊢
(.r‘𝑅) = (+g‘𝑀) | 
| 22 | 3, 21, 4 | cntzel 19341 | . . . . . 6
⊢ ((𝑆 ⊆ 𝐵 ∧ (0g‘𝑅) ∈ 𝐵) → ((0g‘𝑅) ∈ (𝑍‘𝑆) ↔ ∀𝑧 ∈ 𝑆 ((0g‘𝑅)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)(0g‘𝑅)))) | 
| 23 | 18, 20, 22 | syl2anc 584 | . . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → ((0g‘𝑅) ∈ (𝑍‘𝑆) ↔ ∀𝑧 ∈ 𝑆 ((0g‘𝑅)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)(0g‘𝑅)))) | 
| 24 | 17, 23 | mpbird 257 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (0g‘𝑅) ∈ (𝑍‘𝑆)) | 
| 25 | 24 | ne0d 4342 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ≠ ∅) | 
| 26 |  | simpl2 1193 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑥 ∈ (𝑍‘𝑆)) | 
| 27 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝑆) | 
| 28 | 21, 4 | cntzi 19347 | . . . . . . . . . . . 12
⊢ ((𝑥 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑥(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)𝑥)) | 
| 29 | 26, 27, 28 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → (𝑥(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)𝑥)) | 
| 30 |  | simpl3 1194 | . . . . . . . . . . . 12
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑦 ∈ (𝑍‘𝑆)) | 
| 31 | 21, 4 | cntzi 19347 | . . . . . . . . . . . 12
⊢ ((𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ 𝑆) → (𝑦(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)𝑦)) | 
| 32 | 30, 27, 31 | syl2anc 584 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → (𝑦(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)𝑦)) | 
| 33 | 29, 32 | oveq12d 7449 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) | 
| 34 |  | simpl1l 1225 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑅 ∈ Ring) | 
| 35 | 5, 26 | sselid 3981 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑥 ∈ 𝐵) | 
| 36 | 5, 30 | sselid 3981 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑦 ∈ 𝐵) | 
| 37 |  | simp1r 1199 | . . . . . . . . . . . 12
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) → 𝑆 ⊆ 𝐵) | 
| 38 | 37 | sselda 3983 | . . . . . . . . . . 11
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝐵) | 
| 39 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(+g‘𝑅) = (+g‘𝑅) | 
| 40 | 2, 39, 10 | ringdir 20259 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) | 
| 41 | 34, 35, 36, 38, 40 | syl13anc 1374 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) | 
| 42 | 2, 39, 10 | ringdi 20258 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ (𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) | 
| 43 | 34, 38, 35, 36, 42 | syl13anc 1374 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)) = ((𝑧(.r‘𝑅)𝑥)(+g‘𝑅)(𝑧(.r‘𝑅)𝑦))) | 
| 44 | 33, 41, 43 | 3eqtr4d 2787 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦))) | 
| 45 | 44 | ralrimiva 3146 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) → ∀𝑧 ∈ 𝑆 ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦))) | 
| 46 |  | simp1l 1198 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) → 𝑅 ∈ Ring) | 
| 47 |  | simp2 1138 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) → 𝑥 ∈ (𝑍‘𝑆)) | 
| 48 | 5, 47 | sselid 3981 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) → 𝑥 ∈ 𝐵) | 
| 49 |  | simp3 1139 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) → 𝑦 ∈ (𝑍‘𝑆)) | 
| 50 | 5, 49 | sselid 3981 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) → 𝑦 ∈ 𝐵) | 
| 51 | 2, 39 | ringacl 20275 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐵) | 
| 52 | 46, 48, 50, 51 | syl3anc 1373 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) → (𝑥(+g‘𝑅)𝑦) ∈ 𝐵) | 
| 53 | 3, 21, 4 | cntzel 19341 | . . . . . . . . 9
⊢ ((𝑆 ⊆ 𝐵 ∧ (𝑥(+g‘𝑅)𝑦) ∈ 𝐵) → ((𝑥(+g‘𝑅)𝑦) ∈ (𝑍‘𝑆) ↔ ∀𝑧 ∈ 𝑆 ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)))) | 
| 54 | 37, 52, 53 | syl2anc 584 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) → ((𝑥(+g‘𝑅)𝑦) ∈ (𝑍‘𝑆) ↔ ∀𝑧 ∈ 𝑆 ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)(𝑥(+g‘𝑅)𝑦)))) | 
| 55 | 45, 54 | mpbird 257 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆) ∧ 𝑦 ∈ (𝑍‘𝑆)) → (𝑥(+g‘𝑅)𝑦) ∈ (𝑍‘𝑆)) | 
| 56 | 55 | 3expa 1119 | . . . . . 6
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑦 ∈ (𝑍‘𝑆)) → (𝑥(+g‘𝑅)𝑦) ∈ (𝑍‘𝑆)) | 
| 57 | 56 | ralrimiva 3146 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → ∀𝑦 ∈ (𝑍‘𝑆)(𝑥(+g‘𝑅)𝑦) ∈ (𝑍‘𝑆)) | 
| 58 | 28 | adantll 714 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → (𝑥(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)𝑥)) | 
| 59 | 58 | fveq2d 6910 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → ((invg‘𝑅)‘(𝑥(.r‘𝑅)𝑧)) = ((invg‘𝑅)‘(𝑧(.r‘𝑅)𝑥))) | 
| 60 |  | eqid 2737 | . . . . . . . . 9
⊢
(invg‘𝑅) = (invg‘𝑅) | 
| 61 |  | simplll 775 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑅 ∈ Ring) | 
| 62 |  | simplr 769 | . . . . . . . . . 10
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑥 ∈ (𝑍‘𝑆)) | 
| 63 | 5, 62 | sselid 3981 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑥 ∈ 𝐵) | 
| 64 |  | simplr 769 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → 𝑆 ⊆ 𝐵) | 
| 65 | 64 | sselda 3983 | . . . . . . . . 9
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → 𝑧 ∈ 𝐵) | 
| 66 | 2, 10, 60, 61, 63, 65 | ringmneg1 20301 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → (((invg‘𝑅)‘𝑥)(.r‘𝑅)𝑧) = ((invg‘𝑅)‘(𝑥(.r‘𝑅)𝑧))) | 
| 67 | 2, 10, 60, 61, 65, 63 | ringmneg2 20302 | . . . . . . . 8
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → (𝑧(.r‘𝑅)((invg‘𝑅)‘𝑥)) = ((invg‘𝑅)‘(𝑧(.r‘𝑅)𝑥))) | 
| 68 | 59, 66, 67 | 3eqtr4d 2787 | . . . . . . 7
⊢ ((((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) ∧ 𝑧 ∈ 𝑆) → (((invg‘𝑅)‘𝑥)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)((invg‘𝑅)‘𝑥))) | 
| 69 | 68 | ralrimiva 3146 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → ∀𝑧 ∈ 𝑆 (((invg‘𝑅)‘𝑥)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)((invg‘𝑅)‘𝑥))) | 
| 70 |  | ringgrp 20235 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | 
| 71 | 70 | ad2antrr 726 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → 𝑅 ∈ Grp) | 
| 72 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → 𝑥 ∈ (𝑍‘𝑆)) | 
| 73 | 5, 72 | sselid 3981 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → 𝑥 ∈ 𝐵) | 
| 74 | 2, 60 | grpinvcl 19005 | . . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ 𝐵) → ((invg‘𝑅)‘𝑥) ∈ 𝐵) | 
| 75 | 71, 73, 74 | syl2anc 584 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → ((invg‘𝑅)‘𝑥) ∈ 𝐵) | 
| 76 | 3, 21, 4 | cntzel 19341 | . . . . . . 7
⊢ ((𝑆 ⊆ 𝐵 ∧ ((invg‘𝑅)‘𝑥) ∈ 𝐵) → (((invg‘𝑅)‘𝑥) ∈ (𝑍‘𝑆) ↔ ∀𝑧 ∈ 𝑆 (((invg‘𝑅)‘𝑥)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)((invg‘𝑅)‘𝑥)))) | 
| 77 | 64, 75, 76 | syl2anc 584 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → (((invg‘𝑅)‘𝑥) ∈ (𝑍‘𝑆) ↔ ∀𝑧 ∈ 𝑆 (((invg‘𝑅)‘𝑥)(.r‘𝑅)𝑧) = (𝑧(.r‘𝑅)((invg‘𝑅)‘𝑥)))) | 
| 78 | 69, 77 | mpbird 257 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → ((invg‘𝑅)‘𝑥) ∈ (𝑍‘𝑆)) | 
| 79 | 57, 78 | jca 511 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ (𝑍‘𝑆)) → (∀𝑦 ∈ (𝑍‘𝑆)(𝑥(+g‘𝑅)𝑦) ∈ (𝑍‘𝑆) ∧ ((invg‘𝑅)‘𝑥) ∈ (𝑍‘𝑆))) | 
| 80 | 79 | ralrimiva 3146 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → ∀𝑥 ∈ (𝑍‘𝑆)(∀𝑦 ∈ (𝑍‘𝑆)(𝑥(+g‘𝑅)𝑦) ∈ (𝑍‘𝑆) ∧ ((invg‘𝑅)‘𝑥) ∈ (𝑍‘𝑆))) | 
| 81 | 70 | adantr 480 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → 𝑅 ∈ Grp) | 
| 82 | 2, 39, 60 | issubg2 19159 | . . . 4
⊢ (𝑅 ∈ Grp → ((𝑍‘𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍‘𝑆) ⊆ 𝐵 ∧ (𝑍‘𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍‘𝑆)(∀𝑦 ∈ (𝑍‘𝑆)(𝑥(+g‘𝑅)𝑦) ∈ (𝑍‘𝑆) ∧ ((invg‘𝑅)‘𝑥) ∈ (𝑍‘𝑆))))) | 
| 83 | 81, 82 | syl 17 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → ((𝑍‘𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍‘𝑆) ⊆ 𝐵 ∧ (𝑍‘𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍‘𝑆)(∀𝑦 ∈ (𝑍‘𝑆)(𝑥(+g‘𝑅)𝑦) ∈ (𝑍‘𝑆) ∧ ((invg‘𝑅)‘𝑥) ∈ (𝑍‘𝑆))))) | 
| 84 | 6, 25, 80, 83 | mpbir3and 1343 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubGrp‘𝑅)) | 
| 85 | 1 | ringmgp 20236 | . . 3
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) | 
| 86 | 3, 4 | cntzsubm 19356 | . . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubMnd‘𝑀)) | 
| 87 | 85, 86 | sylan 580 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubMnd‘𝑀)) | 
| 88 | 1 | issubrg3 20600 | . . 3
⊢ (𝑅 ∈ Ring → ((𝑍‘𝑆) ∈ (SubRing‘𝑅) ↔ ((𝑍‘𝑆) ∈ (SubGrp‘𝑅) ∧ (𝑍‘𝑆) ∈ (SubMnd‘𝑀)))) | 
| 89 | 88 | adantr 480 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → ((𝑍‘𝑆) ∈ (SubRing‘𝑅) ↔ ((𝑍‘𝑆) ∈ (SubGrp‘𝑅) ∧ (𝑍‘𝑆) ∈ (SubMnd‘𝑀)))) | 
| 90 | 84, 87, 89 | mpbir2and 713 | 1
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubRing‘𝑅)) |