MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubr Structured version   Visualization version   GIF version

Theorem cntzsubr 20255
Description: Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
cntzsubr.b 𝐵 = (Base‘𝑅)
cntzsubr.m 𝑀 = (mulGrp‘𝑅)
cntzsubr.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubr ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))

Proof of Theorem cntzsubr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzsubr.m . . . . . 6 𝑀 = (mulGrp‘𝑅)
2 cntzsubr.b . . . . . 6 𝐵 = (Base‘𝑅)
31, 2mgpbas 19902 . . . . 5 𝐵 = (Base‘𝑀)
4 cntzsubr.z . . . . 5 𝑍 = (Cntz‘𝑀)
53, 4cntzssv 19108 . . . 4 (𝑍𝑆) ⊆ 𝐵
65a1i 11 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
7 simpll 765 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
8 ssel2 3939 . . . . . . . . 9 ((𝑆𝐵𝑧𝑆) → 𝑧𝐵)
98adantll 712 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → 𝑧𝐵)
10 eqid 2736 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
11 eqid 2736 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
122, 10, 11ringlz 20011 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑧𝐵) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
137, 9, 12syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (0g𝑅))
142, 10, 11ringrz 20012 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑧𝐵) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
157, 9, 14syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(0g𝑅)) = (0g𝑅))
1613, 15eqtr4d 2779 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑧𝑆) → ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
1716ralrimiva 3143 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅)))
18 simpr 485 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → 𝑆𝐵)
192, 11ring0cl 19990 . . . . . . 7 (𝑅 ∈ Ring → (0g𝑅) ∈ 𝐵)
2019adantr 481 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (0g𝑅) ∈ 𝐵)
211, 10mgpplusg 19900 . . . . . . 7 (.r𝑅) = (+g𝑀)
223, 21, 4cntzel 19103 . . . . . 6 ((𝑆𝐵 ∧ (0g𝑅) ∈ 𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2318, 20, 22syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((0g𝑅) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((0g𝑅)(.r𝑅)𝑧) = (𝑧(.r𝑅)(0g𝑅))))
2417, 23mpbird 256 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (0g𝑅) ∈ (𝑍𝑆))
2524ne0d 4295 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ≠ ∅)
26 simpl2 1192 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
27 simpr 485 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝑆)
2821, 4cntzi 19109 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
2926, 27, 28syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
30 simpl3 1193 . . . . . . . . . . . 12 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦 ∈ (𝑍𝑆))
3121, 4cntzi 19109 . . . . . . . . . . . 12 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3230, 27, 31syl2anc 584 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑦(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑦))
3329, 32oveq12d 7375 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
34 simpl1l 1224 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
355, 26sselid 3942 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
365, 30sselid 3942 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑦𝐵)
37 simp1r 1198 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑆𝐵)
3837sselda 3944 . . . . . . . . . . 11 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
39 eqid 2736 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
402, 39, 10ringdir 19988 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
4134, 35, 36, 38, 40syl13anc 1372 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = ((𝑥(.r𝑅)𝑧)(+g𝑅)(𝑦(.r𝑅)𝑧)))
422, 39, 10ringdi 19987 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ (𝑧𝐵𝑥𝐵𝑦𝐵)) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4334, 38, 35, 36, 42syl13anc 1372 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4433, 41, 433eqtr4d 2786 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
4544ralrimiva 3143 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)))
46 simp1l 1197 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑅 ∈ Ring)
47 simp2 1137 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
485, 47sselid 3942 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑥𝐵)
49 simp3 1138 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦 ∈ (𝑍𝑆))
505, 49sselid 3942 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → 𝑦𝐵)
512, 39ringacl 19999 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
5246, 48, 50, 51syl3anc 1371 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ 𝐵)
533, 21, 4cntzel 19103 . . . . . . . . 9 ((𝑆𝐵 ∧ (𝑥(+g𝑅)𝑦) ∈ 𝐵) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5437, 52, 53syl2anc 584 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → ((𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 ((𝑥(+g𝑅)𝑦)(.r𝑅)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))))
5545, 54mpbird 256 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
56553expa 1118 . . . . . 6 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑦 ∈ (𝑍𝑆)) → (𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5756ralrimiva 3143 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆))
5828adantll 712 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑥(.r𝑅)𝑧) = (𝑧(.r𝑅)𝑥))
5958fveq2d 6846 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → ((invg𝑅)‘(𝑥(.r𝑅)𝑧)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
60 eqid 2736 . . . . . . . . 9 (invg𝑅) = (invg𝑅)
61 simplll 773 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑅 ∈ Ring)
62 simplr 767 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥 ∈ (𝑍𝑆))
635, 62sselid 3942 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑥𝐵)
64 simplr 767 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑆𝐵)
6564sselda 3944 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → 𝑧𝐵)
662, 10, 60, 61, 63, 65ringmneg1 20020 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = ((invg𝑅)‘(𝑥(.r𝑅)𝑧)))
672, 10, 60, 61, 65, 63ringmneg2 20021 . . . . . . . 8 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (𝑧(.r𝑅)((invg𝑅)‘𝑥)) = ((invg𝑅)‘(𝑧(.r𝑅)𝑥)))
6859, 66, 673eqtr4d 2786 . . . . . . 7 ((((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) ∧ 𝑧𝑆) → (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
6968ralrimiva 3143 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥)))
70 ringgrp 19969 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
7170ad2antrr 724 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑅 ∈ Grp)
72 simpr 485 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥 ∈ (𝑍𝑆))
735, 72sselid 3942 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → 𝑥𝐵)
742, 60grpinvcl 18798 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐵) → ((invg𝑅)‘𝑥) ∈ 𝐵)
7571, 73, 74syl2anc 584 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ 𝐵)
763, 21, 4cntzel 19103 . . . . . . 7 ((𝑆𝐵 ∧ ((invg𝑅)‘𝑥) ∈ 𝐵) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7764, 75, 76syl2anc 584 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (((invg𝑅)‘𝑥) ∈ (𝑍𝑆) ↔ ∀𝑧𝑆 (((invg𝑅)‘𝑥)(.r𝑅)𝑧) = (𝑧(.r𝑅)((invg𝑅)‘𝑥))))
7869, 77mpbird 256 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → ((invg𝑅)‘𝑥) ∈ (𝑍𝑆))
7957, 78jca 512 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ 𝑥 ∈ (𝑍𝑆)) → (∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
8079ralrimiva 3143 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))
8170adantr 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → 𝑅 ∈ Grp)
822, 39, 60issubg2 18943 . . . 4 (𝑅 ∈ Grp → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
8381, 82syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubGrp‘𝑅) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (𝑍𝑆) ≠ ∅ ∧ ∀𝑥 ∈ (𝑍𝑆)(∀𝑦 ∈ (𝑍𝑆)(𝑥(+g𝑅)𝑦) ∈ (𝑍𝑆) ∧ ((invg𝑅)‘𝑥) ∈ (𝑍𝑆)))))
846, 25, 80, 83mpbir3and 1342 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubGrp‘𝑅))
851ringmgp 19970 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
863, 4cntzsubm 19116 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
8785, 86sylan 580 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
881issubrg3 20250 . . 3 (𝑅 ∈ Ring → ((𝑍𝑆) ∈ (SubRing‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ (𝑍𝑆) ∈ (SubMnd‘𝑀))))
8988adantr 481 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubRing‘𝑅) ↔ ((𝑍𝑆) ∈ (SubGrp‘𝑅) ∧ (𝑍𝑆) ∈ (SubMnd‘𝑀))))
9084, 87, 89mpbir2and 711 1 ((𝑅 ∈ Ring ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wss 3910  c0 4282  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  0gc0g 17321  Mndcmnd 18556  SubMndcsubmnd 18600  Grpcgrp 18748  invgcminusg 18749  SubGrpcsubg 18922  Cntzccntz 19095  mulGrpcmgp 19896  Ringcrg 19964  SubRingcsubrg 20218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-subg 18925  df-cntz 19097  df-mgp 19897  df-ur 19914  df-ring 19966  df-subrg 20220
This theorem is referenced by:  cntzsdrg  20269  cntrcrng  31904
  Copyright terms: Public domain W3C validator