MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringlghm Structured version   Visualization version   GIF version

Theorem ringlghm 19080
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b 𝐵 = (Base‘𝑅)
ringlghm.t · = (.r𝑅)
Assertion
Ref Expression
ringlghm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥,𝑋

Proof of Theorem ringlghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2778 . 2 (+g𝑅) = (+g𝑅)
3 ringgrp 19028 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43adantr 473 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
5 ringlghm.t . . . . 5 · = (.r𝑅)
61, 5ringcl 19037 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
763expa 1098 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
87fmpttd 6704 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵)
9 3anass 1076 . . . . 5 ((𝑋𝐵𝑦𝐵𝑧𝐵) ↔ (𝑋𝐵 ∧ (𝑦𝐵𝑧𝐵)))
101, 2, 5ringdi 19042 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
119, 10sylan2br 585 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑦𝐵𝑧𝐵))) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
1211anassrs 460 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
131, 2ringacl 19054 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
14133expb 1100 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
1514adantlr 702 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
16 oveq2 6986 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑋 · 𝑥) = (𝑋 · (𝑦(+g𝑅)𝑧)))
17 eqid 2778 . . . . 5 (𝑥𝐵 ↦ (𝑋 · 𝑥)) = (𝑥𝐵 ↦ (𝑋 · 𝑥))
18 ovex 7010 . . . . 5 (𝑋 · (𝑦(+g𝑅)𝑧)) ∈ V
1916, 17, 18fvmpt 6597 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (𝑋 · (𝑦(+g𝑅)𝑧)))
2015, 19syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (𝑋 · (𝑦(+g𝑅)𝑧)))
21 oveq2 6986 . . . . . 6 (𝑥 = 𝑦 → (𝑋 · 𝑥) = (𝑋 · 𝑦))
22 ovex 7010 . . . . . 6 (𝑋 · 𝑦) ∈ V
2321, 17, 22fvmpt 6597 . . . . 5 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦) = (𝑋 · 𝑦))
24 oveq2 6986 . . . . . 6 (𝑥 = 𝑧 → (𝑋 · 𝑥) = (𝑋 · 𝑧))
25 ovex 7010 . . . . . 6 (𝑋 · 𝑧) ∈ V
2624, 17, 25fvmpt 6597 . . . . 5 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧) = (𝑋 · 𝑧))
2723, 26oveqan12d 6997 . . . 4 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
2827adantl 474 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
2912, 20, 283eqtr4d 2824 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)))
301, 1, 2, 2, 4, 4, 8, 29isghmd 18141 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  cmpt 5009  cfv 6190  (class class class)co 6978  Basecbs 16342  +gcplusg 16424  .rcmulr 16425  Grpcgrp 17894   GrpHom cghm 18129  Ringcrg 19023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5050  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-plusg 16437  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-grp 17897  df-ghm 18130  df-mgp 18966  df-ring 19025
This theorem is referenced by:  gsummulc2  19083
  Copyright terms: Public domain W3C validator