MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringlghm Structured version   Visualization version   GIF version

Theorem ringlghm 19758
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
Hypotheses
Ref Expression
ringlghm.b 𝐵 = (Base‘𝑅)
ringlghm.t · = (.r𝑅)
Assertion
Ref Expression
ringlghm ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑅   𝑥, ·   𝑥,𝑋

Proof of Theorem ringlghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringlghm.b . 2 𝐵 = (Base‘𝑅)
2 eqid 2738 . 2 (+g𝑅) = (+g𝑅)
3 ringgrp 19703 . . 3 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
43adantr 480 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
5 ringlghm.t . . . . 5 · = (.r𝑅)
61, 5ringcl 19715 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
763expa 1116 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ 𝑥𝐵) → (𝑋 · 𝑥) ∈ 𝐵)
87fmpttd 6971 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)):𝐵𝐵)
9 3anass 1093 . . . . 5 ((𝑋𝐵𝑦𝐵𝑧𝐵) ↔ (𝑋𝐵 ∧ (𝑦𝐵𝑧𝐵)))
101, 2, 5ringdi 19720 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
119, 10sylan2br 594 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑦𝐵𝑧𝐵))) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
1211anassrs 467 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑋 · (𝑦(+g𝑅)𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
131, 2ringacl 19732 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
14133expb 1118 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
1514adantlr 711 . . . 4 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (𝑦(+g𝑅)𝑧) ∈ 𝐵)
16 oveq2 7263 . . . . 5 (𝑥 = (𝑦(+g𝑅)𝑧) → (𝑋 · 𝑥) = (𝑋 · (𝑦(+g𝑅)𝑧)))
17 eqid 2738 . . . . 5 (𝑥𝐵 ↦ (𝑋 · 𝑥)) = (𝑥𝐵 ↦ (𝑋 · 𝑥))
18 ovex 7288 . . . . 5 (𝑋 · (𝑦(+g𝑅)𝑧)) ∈ V
1916, 17, 18fvmpt 6857 . . . 4 ((𝑦(+g𝑅)𝑧) ∈ 𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (𝑋 · (𝑦(+g𝑅)𝑧)))
2015, 19syl 17 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (𝑋 · (𝑦(+g𝑅)𝑧)))
21 oveq2 7263 . . . . . 6 (𝑥 = 𝑦 → (𝑋 · 𝑥) = (𝑋 · 𝑦))
22 ovex 7288 . . . . . 6 (𝑋 · 𝑦) ∈ V
2321, 17, 22fvmpt 6857 . . . . 5 (𝑦𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦) = (𝑋 · 𝑦))
24 oveq2 7263 . . . . . 6 (𝑥 = 𝑧 → (𝑋 · 𝑥) = (𝑋 · 𝑧))
25 ovex 7288 . . . . . 6 (𝑋 · 𝑧) ∈ V
2624, 17, 25fvmpt 6857 . . . . 5 (𝑧𝐵 → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧) = (𝑋 · 𝑧))
2723, 26oveqan12d 7274 . . . 4 ((𝑦𝐵𝑧𝐵) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
2827adantl 481 . . 3 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g𝑅)(𝑋 · 𝑧)))
2912, 20, 283eqtr4d 2788 . 2 (((𝑅 ∈ Ring ∧ 𝑋𝐵) ∧ (𝑦𝐵𝑧𝐵)) → ((𝑥𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g𝑅)𝑧)) = (((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g𝑅)((𝑥𝐵 ↦ (𝑋 · 𝑥))‘𝑧)))
301, 1, 2, 2, 4, 4, 8, 29isghmd 18758 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cmpt 5153  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Grpcgrp 18492   GrpHom cghm 18746  Ringcrg 19698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-ghm 18747  df-mgp 19636  df-ring 19700
This theorem is referenced by:  gsummulc2  19761
  Copyright terms: Public domain W3C validator