Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringlghm | Structured version Visualization version GIF version |
Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
Ref | Expression |
---|---|
ringlghm.b | ⊢ 𝐵 = (Base‘𝑅) |
ringlghm.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
ringlghm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringlghm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2737 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
3 | ringgrp 19567 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 3 | adantr 484 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
5 | ringlghm.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
6 | 1, 5 | ringcl 19579 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
7 | 6 | 3expa 1120 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
8 | 7 | fmpttd 6932 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵) |
9 | 3anass 1097 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) | |
10 | 1, 2, 5 | ringdi 19584 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
11 | 9, 10 | sylan2br 598 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
12 | 11 | anassrs 471 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
13 | 1, 2 | ringacl 19596 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
14 | 13 | 3expb 1122 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
15 | 14 | adantlr 715 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
16 | oveq2 7221 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑋 · 𝑥) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) | |
17 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) | |
18 | ovex 7246 | . . . . 5 ⊢ (𝑋 · (𝑦(+g‘𝑅)𝑧)) ∈ V | |
19 | 16, 17, 18 | fvmpt 6818 | . . . 4 ⊢ ((𝑦(+g‘𝑅)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) |
20 | 15, 19 | syl 17 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) |
21 | oveq2 7221 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑋 · 𝑥) = (𝑋 · 𝑦)) | |
22 | ovex 7246 | . . . . . 6 ⊢ (𝑋 · 𝑦) ∈ V | |
23 | 21, 17, 22 | fvmpt 6818 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦) = (𝑋 · 𝑦)) |
24 | oveq2 7221 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑋 · 𝑥) = (𝑋 · 𝑧)) | |
25 | ovex 7246 | . . . . . 6 ⊢ (𝑋 · 𝑧) ∈ V | |
26 | 24, 17, 25 | fvmpt 6818 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧) = (𝑋 · 𝑧)) |
27 | 23, 26 | oveqan12d 7232 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
28 | 27 | adantl 485 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
29 | 12, 20, 28 | 3eqtr4d 2787 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧))) |
30 | 1, 1, 2, 2, 4, 4, 8, 29 | isghmd 18631 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ↦ cmpt 5135 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 +gcplusg 16802 .rcmulr 16803 Grpcgrp 18365 GrpHom cghm 18619 Ringcrg 19562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-ghm 18620 df-mgp 19505 df-ring 19564 |
This theorem is referenced by: gsummulc2 19625 |
Copyright terms: Public domain | W3C validator |