| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringlghm | Structured version Visualization version GIF version | ||
| Description: Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.) |
| Ref | Expression |
|---|---|
| ringlghm.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringlghm.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ringlghm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringlghm.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2731 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 3 | ringgrp 20151 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 4 | 3 | adantr 480 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 5 | ringlghm.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 6 | 1, 5 | ringcl 20163 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
| 7 | 6 | 3expa 1118 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ 𝑥 ∈ 𝐵) → (𝑋 · 𝑥) ∈ 𝐵) |
| 8 | 7 | fmpttd 7043 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)):𝐵⟶𝐵) |
| 9 | 3anass 1094 | . . . . 5 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑋 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) | |
| 10 | 1, 2, 5 | ringdi 20174 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
| 11 | 9, 10 | sylan2br 595 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵))) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
| 12 | 11 | anassrs 467 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑋 · (𝑦(+g‘𝑅)𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
| 13 | 1, 2 | ringacl 20191 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
| 14 | 13 | 3expb 1120 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
| 15 | 14 | adantlr 715 | . . . 4 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐵) |
| 16 | oveq2 7349 | . . . . 5 ⊢ (𝑥 = (𝑦(+g‘𝑅)𝑧) → (𝑋 · 𝑥) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) | |
| 17 | eqid 2731 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) = (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) | |
| 18 | ovex 7374 | . . . . 5 ⊢ (𝑋 · (𝑦(+g‘𝑅)𝑧)) ∈ V | |
| 19 | 16, 17, 18 | fvmpt 6924 | . . . 4 ⊢ ((𝑦(+g‘𝑅)𝑧) ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) |
| 20 | 15, 19 | syl 17 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (𝑋 · (𝑦(+g‘𝑅)𝑧))) |
| 21 | oveq2 7349 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑋 · 𝑥) = (𝑋 · 𝑦)) | |
| 22 | ovex 7374 | . . . . . 6 ⊢ (𝑋 · 𝑦) ∈ V | |
| 23 | 21, 17, 22 | fvmpt 6924 | . . . . 5 ⊢ (𝑦 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦) = (𝑋 · 𝑦)) |
| 24 | oveq2 7349 | . . . . . 6 ⊢ (𝑥 = 𝑧 → (𝑋 · 𝑥) = (𝑋 · 𝑧)) | |
| 25 | ovex 7374 | . . . . . 6 ⊢ (𝑋 · 𝑧) ∈ V | |
| 26 | 24, 17, 25 | fvmpt 6924 | . . . . 5 ⊢ (𝑧 ∈ 𝐵 → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧) = (𝑋 · 𝑧)) |
| 27 | 23, 26 | oveqan12d 7360 | . . . 4 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
| 28 | 27 | adantl 481 | . . 3 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧)) = ((𝑋 · 𝑦)(+g‘𝑅)(𝑋 · 𝑧))) |
| 29 | 12, 20, 28 | 3eqtr4d 2776 | . 2 ⊢ (((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘(𝑦(+g‘𝑅)𝑧)) = (((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑦)(+g‘𝑅)((𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥))‘𝑧))) |
| 30 | 1, 1, 2, 2, 4, 4, 8, 29 | isghmd 19132 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 +gcplusg 17156 .rcmulr 17157 Grpcgrp 18841 GrpHom cghm 19119 Ringcrg 20146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-ghm 19120 df-mgp 20054 df-ring 20148 |
| This theorem is referenced by: gsummulc2OLD 20228 gsummulc2 20230 lactlmhm 33639 |
| Copyright terms: Public domain | W3C validator |