Step | Hyp | Ref
| Expression |
1 | | mamucl.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑅) |
2 | | mamudir.p |
. . . . . 6
⊢ + =
(+g‘𝑅) |
3 | | mamucl.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ Ring) |
4 | | ringcmn 19735 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
5 | 3, 4 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ CMnd) |
6 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑅 ∈ CMnd) |
7 | | mamudi.n |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ Fin) |
8 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑁 ∈ Fin) |
9 | 3 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
10 | | mamudir.x |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
11 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
12 | 10, 11 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
13 | 12 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
14 | | simplrl 773 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) |
15 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
16 | 13, 14, 15 | fovrnd 7422 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
17 | | mamudir.y |
. . . . . . . . . 10
⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
18 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
19 | 17, 18 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
20 | 19 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑌:(𝑁 × 𝑂)⟶𝐵) |
21 | | simplrr 774 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑂) |
22 | 20, 15, 21 | fovrnd 7422 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑌𝑘) ∈ 𝐵) |
23 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝑅) = (.r‘𝑅) |
24 | 1, 23 | ringcl 19715 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
25 | 9, 16, 22, 24 | syl3anc 1369 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
26 | | mamudir.z |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
27 | | elmapi 8595 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
29 | 28 | ad2antrr 722 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵) |
30 | 29, 15, 21 | fovrnd 7422 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑍𝑘) ∈ 𝐵) |
31 | 1, 23 | ringcl 19715 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) |
32 | 9, 16, 30, 31 | syl3anc 1369 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)) ∈ 𝐵) |
33 | | eqid 2738 |
. . . . . 6
⊢ (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) |
34 | | eqid 2738 |
. . . . . 6
⊢ (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) |
35 | 1, 2, 6, 8, 25, 32, 33, 34 | gsummptfidmadd2 19442 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg ((𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) = ((𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
36 | 20 | ffnd 6585 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑌 Fn (𝑁 × 𝑂)) |
37 | 29 | ffnd 6585 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 𝑍 Fn (𝑁 × 𝑂)) |
38 | | mamudi.o |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂 ∈ Fin) |
39 | | xpfi 9015 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin) |
40 | 7, 38, 39 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑁 × 𝑂) ∈ Fin) |
41 | 40 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑁 × 𝑂) ∈ Fin) |
42 | | opelxpi 5617 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ 𝑁 ∧ 𝑘 ∈ 𝑂) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
43 | 42 | ancoms 458 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ 𝑂 ∧ 𝑗 ∈ 𝑁) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
44 | 43 | adantll 710 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂) ∧ 𝑗 ∈ 𝑁) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
45 | 44 | adantll 710 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂)) |
46 | | fnfvof 7528 |
. . . . . . . . . . . 12
⊢ (((𝑌 Fn (𝑁 × 𝑂) ∧ 𝑍 Fn (𝑁 × 𝑂)) ∧ ((𝑁 × 𝑂) ∈ Fin ∧ 〈𝑗, 𝑘〉 ∈ (𝑁 × 𝑂))) → ((𝑌 ∘f + 𝑍)‘〈𝑗, 𝑘〉) = ((𝑌‘〈𝑗, 𝑘〉) + (𝑍‘〈𝑗, 𝑘〉))) |
47 | 36, 37, 41, 45, 46 | syl22anc 835 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑌 ∘f + 𝑍)‘〈𝑗, 𝑘〉) = ((𝑌‘〈𝑗, 𝑘〉) + (𝑍‘〈𝑗, 𝑘〉))) |
48 | | df-ov 7258 |
. . . . . . . . . . 11
⊢ (𝑗(𝑌 ∘f + 𝑍)𝑘) = ((𝑌 ∘f + 𝑍)‘〈𝑗, 𝑘〉) |
49 | | df-ov 7258 |
. . . . . . . . . . . 12
⊢ (𝑗𝑌𝑘) = (𝑌‘〈𝑗, 𝑘〉) |
50 | | df-ov 7258 |
. . . . . . . . . . . 12
⊢ (𝑗𝑍𝑘) = (𝑍‘〈𝑗, 𝑘〉) |
51 | 49, 50 | oveq12i 7267 |
. . . . . . . . . . 11
⊢ ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)) = ((𝑌‘〈𝑗, 𝑘〉) + (𝑍‘〈𝑗, 𝑘〉)) |
52 | 47, 48, 51 | 3eqtr4g 2804 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → (𝑗(𝑌 ∘f + 𝑍)𝑘) = ((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) |
53 | 52 | oveq2d 7271 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘f + 𝑍)𝑘)) = ((𝑖𝑋𝑗)(.r‘𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘)))) |
54 | 1, 2, 23 | ringdi 19720 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗)(.r‘𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
55 | 9, 16, 22, 30, 54 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
56 | 53, 55 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘f + 𝑍)𝑘)) = (((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
57 | 56 | mpteq2dva 5170 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘f + 𝑍)𝑘))) = (𝑗 ∈ 𝑁 ↦ (((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
58 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) |
59 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) |
60 | 8, 25, 32, 58, 59 | offval2 7531 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → ((𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))) = (𝑗 ∈ 𝑁 ↦ (((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
61 | 57, 60 | eqtr4d 2781 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘f + 𝑍)𝑘))) = ((𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
62 | 61 | oveq2d 7271 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘f + 𝑍)𝑘)))) = (𝑅 Σg ((𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
63 | | mamudi.f |
. . . . . . 7
⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑂〉) |
64 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑅 ∈ Ring) |
65 | | mamudi.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ Fin) |
66 | 65 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑀 ∈ Fin) |
67 | 38 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑂 ∈ Fin) |
68 | 10 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
69 | 17 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
70 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑖 ∈ 𝑀) |
71 | | simprr 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑘 ∈ 𝑂) |
72 | 63, 1, 23, 64, 66, 8, 67, 68, 69, 70, 71 | mamufv 21446 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹𝑌)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) |
73 | 26 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
74 | 63, 1, 23, 64, 66, 8, 67, 68, 73, 70, 71 | mamufv 21446 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘))))) |
75 | 72, 74 | oveq12d 7273 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = ((𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑍𝑘)))))) |
76 | 35, 62, 75 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘f + 𝑍)𝑘)))) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘))) |
77 | | ringmnd 19708 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
78 | 3, 77 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Mnd) |
79 | 1, 2 | mndvcl 21450 |
. . . . . . 7
⊢ ((𝑅 ∈ Mnd ∧ 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵 ↑m (𝑁 × 𝑂))) → (𝑌 ∘f + 𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
80 | 78, 17, 26, 79 | syl3anc 1369 |
. . . . . 6
⊢ (𝜑 → (𝑌 ∘f + 𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
81 | 80 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑌 ∘f + 𝑍) ∈ (𝐵 ↑m (𝑁 × 𝑂))) |
82 | 63, 1, 23, 64, 66, 8, 67, 68, 81, 70, 71 | mamufv 21446 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹(𝑌 ∘f + 𝑍))𝑘) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗(𝑌 ∘f + 𝑍)𝑘))))) |
83 | 1, 3, 63, 65, 7, 38, 10, 17 | mamucl 21458 |
. . . . . . . 8
⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
84 | | elmapi 8595 |
. . . . . . . 8
⊢ ((𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑂)) → (𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵) |
85 | | ffn 6584 |
. . . . . . . 8
⊢ ((𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂)) |
86 | 83, 84, 85 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂)) |
87 | 86 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂)) |
88 | 1, 3, 63, 65, 7, 38, 10, 26 | mamucl 21458 |
. . . . . . . 8
⊢ (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
89 | | elmapi 8595 |
. . . . . . . 8
⊢ ((𝑋𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵) |
90 | | ffn 6584 |
. . . . . . . 8
⊢ ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
91 | 88, 89, 90 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
92 | 91 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) |
93 | | xpfi 9015 |
. . . . . . . 8
⊢ ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin) |
94 | 65, 38, 93 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (𝑀 × 𝑂) ∈ Fin) |
95 | 94 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑀 × 𝑂) ∈ Fin) |
96 | | opelxpi 5617 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
97 | 96 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂)) |
98 | | fnfvof 7528 |
. . . . . 6
⊢ ((((𝑋𝐹𝑌) Fn (𝑀 × 𝑂) ∧ (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) ∧ ((𝑀 × 𝑂) ∈ Fin ∧ 〈𝑖, 𝑘〉 ∈ (𝑀 × 𝑂))) → (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) = (((𝑋𝐹𝑌)‘〈𝑖, 𝑘〉) + ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉))) |
99 | 87, 92, 95, 97, 98 | syl22anc 835 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) = (((𝑋𝐹𝑌)‘〈𝑖, 𝑘〉) + ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉))) |
100 | | df-ov 7258 |
. . . . 5
⊢ (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘) = (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘〈𝑖, 𝑘〉) |
101 | | df-ov 7258 |
. . . . . 6
⊢ (𝑖(𝑋𝐹𝑌)𝑘) = ((𝑋𝐹𝑌)‘〈𝑖, 𝑘〉) |
102 | | df-ov 7258 |
. . . . . 6
⊢ (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉) |
103 | 101, 102 | oveq12i 7267 |
. . . . 5
⊢ ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = (((𝑋𝐹𝑌)‘〈𝑖, 𝑘〉) + ((𝑋𝐹𝑍)‘〈𝑖, 𝑘〉)) |
104 | 99, 100, 103 | 3eqtr4g 2804 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘))) |
105 | 76, 82, 104 | 3eqtr4d 2788 |
. . 3
⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑂)) → (𝑖(𝑋𝐹(𝑌 ∘f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘)) |
106 | 105 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(𝑌 ∘f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘)) |
107 | 1, 3, 63, 65, 7, 38, 10, 80 | mamucl 21458 |
. . . 4
⊢ (𝜑 → (𝑋𝐹(𝑌 ∘f + 𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
108 | | elmapi 8595 |
. . . 4
⊢ ((𝑋𝐹(𝑌 ∘f + 𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂)) → (𝑋𝐹(𝑌 ∘f + 𝑍)):(𝑀 × 𝑂)⟶𝐵) |
109 | | ffn 6584 |
. . . 4
⊢ ((𝑋𝐹(𝑌 ∘f + 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(𝑌 ∘f + 𝑍)) Fn (𝑀 × 𝑂)) |
110 | 107, 108,
109 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝑋𝐹(𝑌 ∘f + 𝑍)) Fn (𝑀 × 𝑂)) |
111 | 1, 2 | mndvcl 21450 |
. . . . 5
⊢ ((𝑅 ∈ Mnd ∧ (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵 ↑m (𝑀 × 𝑂))) → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
112 | 78, 83, 88, 111 | syl3anc 1369 |
. . . 4
⊢ (𝜑 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂))) |
113 | | elmapi 8595 |
. . . 4
⊢ (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵 ↑m (𝑀 × 𝑂)) → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵) |
114 | | ffn 6584 |
. . . 4
⊢ (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) |
115 | 112, 113,
114 | 3syl 18 |
. . 3
⊢ (𝜑 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) |
116 | | eqfnov2 7382 |
. . 3
⊢ (((𝑋𝐹(𝑌 ∘f + 𝑍)) Fn (𝑀 × 𝑂) ∧ ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(𝑌 ∘f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(𝑌 ∘f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘))) |
117 | 110, 115,
116 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝑋𝐹(𝑌 ∘f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ↔ ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑂 (𝑖(𝑋𝐹(𝑌 ∘f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘))) |
118 | 106, 117 | mpbird 256 |
1
⊢ (𝜑 → (𝑋𝐹(𝑌 ∘f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))) |