MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudir Structured version   Visualization version   GIF version

Theorem mamudir 22423
Description: Matrix multiplication distributes over addition on the right. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamudir.p + = (+g𝑅)
mamudir.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamudir.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
mamudir.z (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
Assertion
Ref Expression
mamudir (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)))

Proof of Theorem mamudir
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamudir.p . . . . . 6 + = (+g𝑅)
3 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ringcmn 20295 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CMnd)
7 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
87adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
93ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
10 mamudir.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
11 elmapi 8887 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1312ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
14 simplrl 777 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
15 simpr 484 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1613, 14, 15fovcdmd 7604 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
17 mamudir.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
18 elmapi 8887 . . . . . . . . . 10 (𝑌 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
1917, 18syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑁 × 𝑂)⟶𝐵)
2019ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
21 simplrr 778 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2220, 15, 21fovcdmd 7604 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑌𝑘) ∈ 𝐵)
23 eqid 2734 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 23ringcl 20267 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
259, 16, 22, 24syl3anc 1370 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
26 mamudir.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
27 elmapi 8887 . . . . . . . . . 10 (𝑍 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2928ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
3029, 15, 21fovcdmd 7604 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
311, 23ringcl 20267 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
329, 16, 30, 31syl3anc 1370 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
33 eqid 2734 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))
34 eqid 2734 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))
351, 2, 6, 8, 25, 32, 33, 34gsummptfidmadd2 19958 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
3620ffnd 6737 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑁 × 𝑂))
3729ffnd 6737 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍 Fn (𝑁 × 𝑂))
38 mamudi.o . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ Fin)
39 xpfi 9355 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin)
407, 38, 39syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑁 × 𝑂) ∈ Fin)
4140ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑁 × 𝑂) ∈ Fin)
42 opelxpi 5725 . . . . . . . . . . . . . . 15 ((𝑗𝑁𝑘𝑂) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4342ancoms 458 . . . . . . . . . . . . . 14 ((𝑘𝑂𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4443adantll 714 . . . . . . . . . . . . 13 (((𝑖𝑀𝑘𝑂) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4544adantll 714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
46 fnfvof 7713 . . . . . . . . . . . 12 (((𝑌 Fn (𝑁 × 𝑂) ∧ 𝑍 Fn (𝑁 × 𝑂)) ∧ ((𝑁 × 𝑂) ∈ Fin ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))) → ((𝑌f + 𝑍)‘⟨𝑗, 𝑘⟩) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩)))
4736, 37, 41, 45, 46syl22anc 839 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑌f + 𝑍)‘⟨𝑗, 𝑘⟩) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩)))
48 df-ov 7433 . . . . . . . . . . 11 (𝑗(𝑌f + 𝑍)𝑘) = ((𝑌f + 𝑍)‘⟨𝑗, 𝑘⟩)
49 df-ov 7433 . . . . . . . . . . . 12 (𝑗𝑌𝑘) = (𝑌‘⟨𝑗, 𝑘⟩)
50 df-ov 7433 . . . . . . . . . . . 12 (𝑗𝑍𝑘) = (𝑍‘⟨𝑗, 𝑘⟩)
5149, 50oveq12i 7442 . . . . . . . . . . 11 ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩))
5247, 48, 513eqtr4g 2799 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗(𝑌f + 𝑍)𝑘) = ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)))
5352oveq2d 7446 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)) = ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))))
541, 2, 23ringdi 20277 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
559, 16, 22, 30, 54syl13anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5653, 55eqtrd 2774 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5756mpteq2dva 5247 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
58 eqidd 2735 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))
59 eqidd 2735 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
608, 25, 32, 58, 59offval2 7716 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6157, 60eqtr4d 2777 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘))) = ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6261oveq2d 7446 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)))) = (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
63 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
643adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
65 mamudi.m . . . . . . . 8 (𝜑𝑀 ∈ Fin)
6665adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
6738adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
6810adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
6917adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
70 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
71 simprr 773 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
7263, 1, 23, 64, 66, 8, 67, 68, 69, 70, 71mamufv 22413 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑌)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))))
7326adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
7463, 1, 23, 64, 66, 8, 67, 68, 73, 70, 71mamufv 22413 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7572, 74oveq12d 7448 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
7635, 62, 753eqtr4d 2784 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)))) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)))
77 ringmnd 20260 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
783, 77syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
791, 2mndvcl 18822 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝑌 ∈ (𝐵m (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵m (𝑁 × 𝑂))) → (𝑌f + 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
8078, 17, 26, 79syl3anc 1370 . . . . . 6 (𝜑 → (𝑌f + 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
8180adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌f + 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
8263, 1, 23, 64, 66, 8, 67, 68, 81, 70, 71mamufv 22413 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)))))
831, 3, 63, 65, 7, 38, 10, 17mamucl 22420 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)))
84 elmapi 8887 . . . . . . . 8 ((𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵)
85 ffn 6736 . . . . . . . 8 ((𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
8683, 84, 853syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
8786adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
881, 3, 63, 65, 7, 38, 10, 26mamucl 22420 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
89 elmapi 8887 . . . . . . . 8 ((𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
90 ffn 6736 . . . . . . . 8 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9188, 89, 903syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9291adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
93 xpfi 9355 . . . . . . . 8 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
9465, 38, 93syl2anc 584 . . . . . . 7 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
9594adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
96 opelxpi 5725 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
9796adantl 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
98 fnfvof 7713 . . . . . 6 ((((𝑋𝐹𝑌) Fn (𝑀 × 𝑂) ∧ (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) ∧ ((𝑀 × 𝑂) ∈ Fin ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))) → (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
9987, 92, 95, 97, 98syl22anc 839 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
100 df-ov 7433 . . . . 5 (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘) = (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩)
101 df-ov 7433 . . . . . 6 (𝑖(𝑋𝐹𝑌)𝑘) = ((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩)
102 df-ov 7433 . . . . . 6 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
103101, 102oveq12i 7442 . . . . 5 ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩))
10499, 100, 1033eqtr4g 2799 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)))
10576, 82, 1043eqtr4d 2784 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘))
106105ralrimivva 3199 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘))
1071, 3, 63, 65, 7, 38, 10, 80mamucl 22420 . . . 4 (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
108 elmapi 8887 . . . 4 ((𝑋𝐹(𝑌f + 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹(𝑌f + 𝑍)):(𝑀 × 𝑂)⟶𝐵)
109 ffn 6736 . . . 4 ((𝑋𝐹(𝑌f + 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(𝑌f + 𝑍)) Fn (𝑀 × 𝑂))
110107, 108, 1093syl 18 . . 3 (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) Fn (𝑀 × 𝑂))
1111, 2mndvcl 18822 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂))) → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
11278, 83, 88, 111syl3anc 1370 . . . 4 (𝜑 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
113 elmapi 8887 . . . 4 (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
114 ffn 6736 . . . 4 (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
115112, 113, 1143syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
116 eqfnov2 7562 . . 3 (((𝑋𝐹(𝑌f + 𝑍)) Fn (𝑀 × 𝑂) ∧ ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘)))
117110, 115, 116syl2anc 584 . 2 (𝜑 → ((𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘)))
118106, 117mpbird 257 1 (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  cop 4636  cotp 4638  cmpt 5230   × cxp 5686   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  f cof 7694  m cmap 8864  Fincfn 8983  Basecbs 17244  +gcplusg 17297  .rcmulr 17298   Σg cgsu 17486  Mndcmnd 18759  CMndccmn 19812  Ringcrg 20250   maMul cmmul 22409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-ot 4639  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-0g 17487  df-gsum 17488  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-ur 20199  df-ring 20252  df-mamu 22410
This theorem is referenced by:  matring  22464
  Copyright terms: Public domain W3C validator