Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudir Structured version   Visualization version   GIF version

Theorem mamudir 20701
 Description: Matrix multiplication distributes over addition on the right. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamudir.p + = (+g𝑅)
mamudir.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamudir.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
mamudir.z (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
Assertion
Ref Expression
mamudir (𝜑 → (𝑋𝐹(𝑌𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)))

Proof of Theorem mamudir
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamudir.p . . . . . 6 + = (+g𝑅)
3 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ringcmn 19025 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CMnd)
7 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
87adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
93ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
10 mamudir.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
11 elmapi 8285 . . . . . . . . . 10 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1312ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
14 simplrl 773 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
15 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1613, 14, 15fovrnd 7183 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
17 mamudir.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
18 elmapi 8285 . . . . . . . . . 10 (𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
1917, 18syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑁 × 𝑂)⟶𝐵)
2019ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
21 simplrr 774 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2220, 15, 21fovrnd 7183 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑌𝑘) ∈ 𝐵)
23 eqid 2797 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 23ringcl 19005 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
259, 16, 22, 24syl3anc 1364 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
26 mamudir.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
27 elmapi 8285 . . . . . . . . . 10 (𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2928ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
3029, 15, 21fovrnd 7183 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
311, 23ringcl 19005 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
329, 16, 30, 31syl3anc 1364 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
33 eqid 2797 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))
34 eqid 2797 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))
351, 2, 6, 8, 25, 32, 33, 34gsummptfidmadd2 18770 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
3620ffnd 6390 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑁 × 𝑂))
3729ffnd 6390 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍 Fn (𝑁 × 𝑂))
38 mamudi.o . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ Fin)
39 xpfi 8642 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin)
407, 38, 39syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑁 × 𝑂) ∈ Fin)
4140ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑁 × 𝑂) ∈ Fin)
42 opelxpi 5487 . . . . . . . . . . . . . . 15 ((𝑗𝑁𝑘𝑂) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4342ancoms 459 . . . . . . . . . . . . . 14 ((𝑘𝑂𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4443adantll 710 . . . . . . . . . . . . 13 (((𝑖𝑀𝑘𝑂) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4544adantll 710 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
46 fnfvof 7288 . . . . . . . . . . . 12 (((𝑌 Fn (𝑁 × 𝑂) ∧ 𝑍 Fn (𝑁 × 𝑂)) ∧ ((𝑁 × 𝑂) ∈ Fin ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))) → ((𝑌𝑓 + 𝑍)‘⟨𝑗, 𝑘⟩) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩)))
4736, 37, 41, 45, 46syl22anc 835 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑌𝑓 + 𝑍)‘⟨𝑗, 𝑘⟩) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩)))
48 df-ov 7026 . . . . . . . . . . 11 (𝑗(𝑌𝑓 + 𝑍)𝑘) = ((𝑌𝑓 + 𝑍)‘⟨𝑗, 𝑘⟩)
49 df-ov 7026 . . . . . . . . . . . 12 (𝑗𝑌𝑘) = (𝑌‘⟨𝑗, 𝑘⟩)
50 df-ov 7026 . . . . . . . . . . . 12 (𝑗𝑍𝑘) = (𝑍‘⟨𝑗, 𝑘⟩)
5149, 50oveq12i 7035 . . . . . . . . . . 11 ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩))
5247, 48, 513eqtr4g 2858 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗(𝑌𝑓 + 𝑍)𝑘) = ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)))
5352oveq2d 7039 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘)) = ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))))
541, 2, 23ringdi 19010 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
559, 16, 22, 30, 54syl13anc 1365 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5653, 55eqtrd 2833 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5756mpteq2dva 5062 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
58 eqidd 2798 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))
59 eqidd 2798 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
608, 25, 32, 58, 59offval2 7291 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6157, 60eqtr4d 2836 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘))) = ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6261oveq2d 7039 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘)))) = (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘𝑓 + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
63 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
643adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
65 mamudi.m . . . . . . . 8 (𝜑𝑀 ∈ Fin)
6665adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
6738adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
6810adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
6917adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
70 simprl 767 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
71 simprr 769 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
7263, 1, 23, 64, 66, 8, 67, 68, 69, 70, 71mamufv 20684 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑌)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))))
7326adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
7463, 1, 23, 64, 66, 8, 67, 68, 73, 70, 71mamufv 20684 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7572, 74oveq12d 7041 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
7635, 62, 753eqtr4d 2843 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘)))) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)))
77 ringmnd 19000 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
783, 77syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
791, 2mndvcl 20688 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂))) → (𝑌𝑓 + 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑂)))
8078, 17, 26, 79syl3anc 1364 . . . . . 6 (𝜑 → (𝑌𝑓 + 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑂)))
8180adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌𝑓 + 𝑍) ∈ (𝐵𝑚 (𝑁 × 𝑂)))
8263, 1, 23, 64, 66, 8, 67, 68, 81, 70, 71mamufv 20684 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(𝑌𝑓 + 𝑍))𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌𝑓 + 𝑍)𝑘)))))
831, 3, 63, 65, 7, 38, 10, 17mamucl 20698 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
84 elmapi 8285 . . . . . . . 8 ((𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵)
85 ffn 6389 . . . . . . . 8 ((𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
8683, 84, 853syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
8786adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
881, 3, 63, 65, 7, 38, 10, 26mamucl 20698 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
89 elmapi 8285 . . . . . . . 8 ((𝑋𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
90 ffn 6389 . . . . . . . 8 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9188, 89, 903syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9291adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
93 xpfi 8642 . . . . . . . 8 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
9465, 38, 93syl2anc 584 . . . . . . 7 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
9594adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
96 opelxpi 5487 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
9796adantl 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
98 fnfvof 7288 . . . . . 6 ((((𝑋𝐹𝑌) Fn (𝑀 × 𝑂) ∧ (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) ∧ ((𝑀 × 𝑂) ∈ Fin ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))) → (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
9987, 92, 95, 97, 98syl22anc 835 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
100 df-ov 7026 . . . . 5 (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘) = (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩)
101 df-ov 7026 . . . . . 6 (𝑖(𝑋𝐹𝑌)𝑘) = ((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩)
102 df-ov 7026 . . . . . 6 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
103101, 102oveq12i 7035 . . . . 5 ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩))
10499, 100, 1033eqtr4g 2858 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)))
10576, 82, 1043eqtr4d 2843 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(𝑌𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘))
106105ralrimivva 3160 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘))
1071, 3, 63, 65, 7, 38, 10, 80mamucl 20698 . . . 4 (𝜑 → (𝑋𝐹(𝑌𝑓 + 𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
108 elmapi 8285 . . . 4 ((𝑋𝐹(𝑌𝑓 + 𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑋𝐹(𝑌𝑓 + 𝑍)):(𝑀 × 𝑂)⟶𝐵)
109 ffn 6389 . . . 4 ((𝑋𝐹(𝑌𝑓 + 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(𝑌𝑓 + 𝑍)) Fn (𝑀 × 𝑂))
110107, 108, 1093syl 18 . . 3 (𝜑 → (𝑋𝐹(𝑌𝑓 + 𝑍)) Fn (𝑀 × 𝑂))
1111, 2mndvcl 20688 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂))) → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
11278, 83, 88, 111syl3anc 1364 . . . 4 (𝜑 → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
113 elmapi 8285 . . . 4 (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
114 ffn 6389 . . . 4 (((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
115112, 113, 1143syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
116 eqfnov2 7144 . . 3 (((𝑋𝐹(𝑌𝑓 + 𝑍)) Fn (𝑀 × 𝑂) ∧ ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(𝑌𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘)))
117110, 115, 116syl2anc 584 . 2 (𝜑 → ((𝑋𝐹(𝑌𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌𝑓 + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍))𝑘)))
118106, 117mpbird 258 1 (𝜑 → (𝑋𝐹(𝑌𝑓 + 𝑍)) = ((𝑋𝐹𝑌) ∘𝑓 + (𝑋𝐹𝑍)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∧ wa 396   = wceq 1525   ∈ wcel 2083  ∀wral 3107  ⟨cop 4484  ⟨cotp 4486   ↦ cmpt 5047   × cxp 5448   Fn wfn 6227  ⟶wf 6228  ‘cfv 6232  (class class class)co 7023   ∘𝑓 cof 7272   ↑𝑚 cmap 8263  Fincfn 8364  Basecbs 16316  +gcplusg 16398  .rcmulr 16399   Σg cgsu 16547  Mndcmnd 17737  CMndccmn 18637  Ringcrg 18991   maMul cmmul 20680 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-ot 4487  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-of 7274  df-om 7444  df-1st 7552  df-2nd 7553  df-supp 7689  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fsupp 8687  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-n0 11752  df-z 11836  df-uz 12098  df-fz 12747  df-fzo 12888  df-seq 13224  df-hash 13545  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-0g 16548  df-gsum 16549  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-submnd 17779  df-grp 17868  df-minusg 17869  df-cntz 18192  df-cmn 18639  df-abl 18640  df-mgp 18934  df-ur 18946  df-ring 18993  df-mamu 20681 This theorem is referenced by:  matring  20740
 Copyright terms: Public domain W3C validator