Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudir Structured version   Visualization version   GIF version

Theorem mamudir 21019
 Description: Matrix multiplication distributes over addition on the right. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamudir.p + = (+g𝑅)
mamudir.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamudir.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
mamudir.z (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
Assertion
Ref Expression
mamudir (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)))

Proof of Theorem mamudir
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamudir.p . . . . . 6 + = (+g𝑅)
3 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ringcmn 19331 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 484 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CMnd)
7 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
87adantr 484 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
93ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
10 mamudir.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
11 elmapi 8414 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1312ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
14 simplrl 776 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
15 simpr 488 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1613, 14, 15fovrnd 7302 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
17 mamudir.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
18 elmapi 8414 . . . . . . . . . 10 (𝑌 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
1917, 18syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑁 × 𝑂)⟶𝐵)
2019ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
21 simplrr 777 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2220, 15, 21fovrnd 7302 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑌𝑘) ∈ 𝐵)
23 eqid 2798 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 23ringcl 19311 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
259, 16, 22, 24syl3anc 1368 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
26 mamudir.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
27 elmapi 8414 . . . . . . . . . 10 (𝑍 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2928ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
3029, 15, 21fovrnd 7302 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
311, 23ringcl 19311 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
329, 16, 30, 31syl3anc 1368 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
33 eqid 2798 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))
34 eqid 2798 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))
351, 2, 6, 8, 25, 32, 33, 34gsummptfidmadd2 19043 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
3620ffnd 6489 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑁 × 𝑂))
3729ffnd 6489 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍 Fn (𝑁 × 𝑂))
38 mamudi.o . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ Fin)
39 xpfi 8776 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin)
407, 38, 39syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → (𝑁 × 𝑂) ∈ Fin)
4140ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑁 × 𝑂) ∈ Fin)
42 opelxpi 5557 . . . . . . . . . . . . . . 15 ((𝑗𝑁𝑘𝑂) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4342ancoms 462 . . . . . . . . . . . . . 14 ((𝑘𝑂𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4443adantll 713 . . . . . . . . . . . . 13 (((𝑖𝑀𝑘𝑂) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4544adantll 713 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
46 fnfvof 7406 . . . . . . . . . . . 12 (((𝑌 Fn (𝑁 × 𝑂) ∧ 𝑍 Fn (𝑁 × 𝑂)) ∧ ((𝑁 × 𝑂) ∈ Fin ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))) → ((𝑌f + 𝑍)‘⟨𝑗, 𝑘⟩) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩)))
4736, 37, 41, 45, 46syl22anc 837 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑌f + 𝑍)‘⟨𝑗, 𝑘⟩) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩)))
48 df-ov 7139 . . . . . . . . . . 11 (𝑗(𝑌f + 𝑍)𝑘) = ((𝑌f + 𝑍)‘⟨𝑗, 𝑘⟩)
49 df-ov 7139 . . . . . . . . . . . 12 (𝑗𝑌𝑘) = (𝑌‘⟨𝑗, 𝑘⟩)
50 df-ov 7139 . . . . . . . . . . . 12 (𝑗𝑍𝑘) = (𝑍‘⟨𝑗, 𝑘⟩)
5149, 50oveq12i 7148 . . . . . . . . . . 11 ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩))
5247, 48, 513eqtr4g 2858 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗(𝑌f + 𝑍)𝑘) = ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)))
5352oveq2d 7152 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)) = ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))))
541, 2, 23ringdi 19316 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
559, 16, 22, 30, 54syl13anc 1369 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5653, 55eqtrd 2833 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5756mpteq2dva 5126 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
58 eqidd 2799 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))
59 eqidd 2799 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
608, 25, 32, 58, 59offval2 7409 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6157, 60eqtr4d 2836 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘))) = ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6261oveq2d 7152 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)))) = (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
63 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
643adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
65 mamudi.m . . . . . . . 8 (𝜑𝑀 ∈ Fin)
6665adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
6738adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
6810adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
6917adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
70 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
71 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
7263, 1, 23, 64, 66, 8, 67, 68, 69, 70, 71mamufv 21004 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑌)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))))
7326adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
7463, 1, 23, 64, 66, 8, 67, 68, 73, 70, 71mamufv 21004 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7572, 74oveq12d 7154 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
7635, 62, 753eqtr4d 2843 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)))) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)))
77 ringmnd 19304 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
783, 77syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
791, 2mndvcl 21008 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝑌 ∈ (𝐵m (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵m (𝑁 × 𝑂))) → (𝑌f + 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
8078, 17, 26, 79syl3anc 1368 . . . . . 6 (𝜑 → (𝑌f + 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
8180adantr 484 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌f + 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
8263, 1, 23, 64, 66, 8, 67, 68, 81, 70, 71mamufv 21004 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)))))
831, 3, 63, 65, 7, 38, 10, 17mamucl 21016 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)))
84 elmapi 8414 . . . . . . . 8 ((𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵)
85 ffn 6488 . . . . . . . 8 ((𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
8683, 84, 853syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
8786adantr 484 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
881, 3, 63, 65, 7, 38, 10, 26mamucl 21016 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
89 elmapi 8414 . . . . . . . 8 ((𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
90 ffn 6488 . . . . . . . 8 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9188, 89, 903syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9291adantr 484 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
93 xpfi 8776 . . . . . . . 8 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
9465, 38, 93syl2anc 587 . . . . . . 7 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
9594adantr 484 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
96 opelxpi 5557 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
9796adantl 485 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
98 fnfvof 7406 . . . . . 6 ((((𝑋𝐹𝑌) Fn (𝑀 × 𝑂) ∧ (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) ∧ ((𝑀 × 𝑂) ∈ Fin ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))) → (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
9987, 92, 95, 97, 98syl22anc 837 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
100 df-ov 7139 . . . . 5 (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘) = (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩)
101 df-ov 7139 . . . . . 6 (𝑖(𝑋𝐹𝑌)𝑘) = ((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩)
102 df-ov 7139 . . . . . 6 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
103101, 102oveq12i 7148 . . . . 5 ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩))
10499, 100, 1033eqtr4g 2858 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)))
10576, 82, 1043eqtr4d 2843 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘))
106105ralrimivva 3156 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘))
1071, 3, 63, 65, 7, 38, 10, 80mamucl 21016 . . . 4 (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
108 elmapi 8414 . . . 4 ((𝑋𝐹(𝑌f + 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹(𝑌f + 𝑍)):(𝑀 × 𝑂)⟶𝐵)
109 ffn 6488 . . . 4 ((𝑋𝐹(𝑌f + 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(𝑌f + 𝑍)) Fn (𝑀 × 𝑂))
110107, 108, 1093syl 18 . . 3 (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) Fn (𝑀 × 𝑂))
1111, 2mndvcl 21008 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂))) → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
11278, 83, 88, 111syl3anc 1368 . . . 4 (𝜑 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
113 elmapi 8414 . . . 4 (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
114 ffn 6488 . . . 4 (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
115112, 113, 1143syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
116 eqfnov2 7262 . . 3 (((𝑋𝐹(𝑌f + 𝑍)) Fn (𝑀 × 𝑂) ∧ ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘)))
117110, 115, 116syl2anc 587 . 2 (𝜑 → ((𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘)))
118106, 117mpbird 260 1 (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ⟨cop 4531  ⟨cotp 4533   ↦ cmpt 5111   × cxp 5518   Fn wfn 6320  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ∘f cof 7389   ↑m cmap 8392  Fincfn 8495  Basecbs 16478  +gcplusg 16560  .rcmulr 16561   Σg cgsu 16709  Mndcmnd 17906  CMndccmn 18902  Ringcrg 19294   maMul cmmul 21000 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-2 11691  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-seq 13368  df-hash 13690  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-0g 16710  df-gsum 16711  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-grp 18101  df-minusg 18102  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-mamu 21001 This theorem is referenced by:  matring  21058
 Copyright terms: Public domain W3C validator