MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamudir Structured version   Visualization version   GIF version

Theorem mamudir 21551
Description: Matrix multiplication distributes over addition on the right. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamudir.p + = (+g𝑅)
mamudir.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamudir.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
mamudir.z (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
Assertion
Ref Expression
mamudir (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)))

Proof of Theorem mamudir
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 mamudir.p . . . . . 6 + = (+g𝑅)
3 mamucl.r . . . . . . . 8 (𝜑𝑅 ∈ Ring)
4 ringcmn 19820 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
53, 4syl 17 . . . . . . 7 (𝜑𝑅 ∈ CMnd)
65adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ CMnd)
7 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
87adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
93ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
10 mamudir.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
11 elmapi 8637 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
1210, 11syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1312ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
14 simplrl 774 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
15 simpr 485 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1613, 14, 15fovrnd 7444 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
17 mamudir.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
18 elmapi 8637 . . . . . . . . . 10 (𝑌 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
1917, 18syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑁 × 𝑂)⟶𝐵)
2019ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑁 × 𝑂)⟶𝐵)
21 simplrr 775 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2220, 15, 21fovrnd 7444 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑌𝑘) ∈ 𝐵)
23 eqid 2738 . . . . . . . 8 (.r𝑅) = (.r𝑅)
241, 23ringcl 19800 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
259, 16, 22, 24syl3anc 1370 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
26 mamudir.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
27 elmapi 8637 . . . . . . . . . 10 (𝑍 ∈ (𝐵m (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
2826, 27syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2928ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
3029, 15, 21fovrnd 7444 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
311, 23ringcl 19800 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
329, 16, 30, 31syl3anc 1370 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)) ∈ 𝐵)
33 eqid 2738 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))
34 eqid 2738 . . . . . 6 (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))
351, 2, 6, 8, 25, 32, 33, 34gsummptfidmadd2 19527 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
3620ffnd 6601 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑁 × 𝑂))
3729ffnd 6601 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍 Fn (𝑁 × 𝑂))
38 mamudi.o . . . . . . . . . . . . . 14 (𝜑𝑂 ∈ Fin)
39 xpfi 9085 . . . . . . . . . . . . . 14 ((𝑁 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑁 × 𝑂) ∈ Fin)
407, 38, 39syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → (𝑁 × 𝑂) ∈ Fin)
4140ad2antrr 723 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑁 × 𝑂) ∈ Fin)
42 opelxpi 5626 . . . . . . . . . . . . . . 15 ((𝑗𝑁𝑘𝑂) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4342ancoms 459 . . . . . . . . . . . . . 14 ((𝑘𝑂𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4443adantll 711 . . . . . . . . . . . . 13 (((𝑖𝑀𝑘𝑂) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
4544adantll 711 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))
46 fnfvof 7550 . . . . . . . . . . . 12 (((𝑌 Fn (𝑁 × 𝑂) ∧ 𝑍 Fn (𝑁 × 𝑂)) ∧ ((𝑁 × 𝑂) ∈ Fin ∧ ⟨𝑗, 𝑘⟩ ∈ (𝑁 × 𝑂))) → ((𝑌f + 𝑍)‘⟨𝑗, 𝑘⟩) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩)))
4736, 37, 41, 45, 46syl22anc 836 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑌f + 𝑍)‘⟨𝑗, 𝑘⟩) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩)))
48 df-ov 7278 . . . . . . . . . . 11 (𝑗(𝑌f + 𝑍)𝑘) = ((𝑌f + 𝑍)‘⟨𝑗, 𝑘⟩)
49 df-ov 7278 . . . . . . . . . . . 12 (𝑗𝑌𝑘) = (𝑌‘⟨𝑗, 𝑘⟩)
50 df-ov 7278 . . . . . . . . . . . 12 (𝑗𝑍𝑘) = (𝑍‘⟨𝑗, 𝑘⟩)
5149, 50oveq12i 7287 . . . . . . . . . . 11 ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)) = ((𝑌‘⟨𝑗, 𝑘⟩) + (𝑍‘⟨𝑗, 𝑘⟩))
5247, 48, 513eqtr4g 2803 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗(𝑌f + 𝑍)𝑘) = ((𝑗𝑌𝑘) + (𝑗𝑍𝑘)))
5352oveq2d 7291 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)) = ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))))
541, 2, 23ringdi 19805 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
559, 16, 22, 30, 54syl13anc 1371 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)((𝑗𝑌𝑘) + (𝑗𝑍𝑘))) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5653, 55eqtrd 2778 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)) = (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
5756mpteq2dva 5174 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
58 eqidd 2739 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))
59 eqidd 2739 . . . . . . . 8 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))
608, 25, 32, 58, 59offval2 7553 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))) = (𝑗𝑁 ↦ (((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) + ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6157, 60eqtr4d 2781 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘))) = ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
6261oveq2d 7291 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)))) = (𝑅 Σg ((𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))) ∘f + (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
63 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
643adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
65 mamudi.m . . . . . . . 8 (𝜑𝑀 ∈ Fin)
6665adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
6738adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
6810adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
6917adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵m (𝑁 × 𝑂)))
70 simprl 768 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
71 simprr 770 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
7263, 1, 23, 64, 66, 8, 67, 68, 69, 70, 71mamufv 21536 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑌)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))))
7326adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵m (𝑁 × 𝑂)))
7463, 1, 23, 64, 66, 8, 67, 68, 73, 70, 71mamufv 21536 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘)))))
7572, 74oveq12d 7293 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = ((𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) + (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑍𝑘))))))
7635, 62, 753eqtr4d 2788 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)))) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)))
77 ringmnd 19793 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
783, 77syl 17 . . . . . . 7 (𝜑𝑅 ∈ Mnd)
791, 2mndvcl 21540 . . . . . . 7 ((𝑅 ∈ Mnd ∧ 𝑌 ∈ (𝐵m (𝑁 × 𝑂)) ∧ 𝑍 ∈ (𝐵m (𝑁 × 𝑂))) → (𝑌f + 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
8078, 17, 26, 79syl3anc 1370 . . . . . 6 (𝜑 → (𝑌f + 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
8180adantr 481 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌f + 𝑍) ∈ (𝐵m (𝑁 × 𝑂)))
8263, 1, 23, 64, 66, 8, 67, 68, 81, 70, 71mamufv 21536 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗(𝑌f + 𝑍)𝑘)))))
831, 3, 63, 65, 7, 38, 10, 17mamucl 21548 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)))
84 elmapi 8637 . . . . . . . 8 ((𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵)
85 ffn 6600 . . . . . . . 8 ((𝑋𝐹𝑌):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
8683, 84, 853syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
8786adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑌) Fn (𝑀 × 𝑂))
881, 3, 63, 65, 7, 38, 10, 26mamucl 21548 . . . . . . . 8 (𝜑 → (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)))
89 elmapi 8637 . . . . . . . 8 ((𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
90 ffn 6600 . . . . . . . 8 ((𝑋𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9188, 89, 903syl 18 . . . . . . 7 (𝜑 → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
9291adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋𝐹𝑍) Fn (𝑀 × 𝑂))
93 xpfi 9085 . . . . . . . 8 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
9465, 38, 93syl2anc 584 . . . . . . 7 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
9594adantr 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
96 opelxpi 5626 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
9796adantl 482 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
98 fnfvof 7550 . . . . . 6 ((((𝑋𝐹𝑌) Fn (𝑀 × 𝑂) ∧ (𝑋𝐹𝑍) Fn (𝑀 × 𝑂)) ∧ ((𝑀 × 𝑂) ∈ Fin ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))) → (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
9987, 92, 95, 97, 98syl22anc 836 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)))
100 df-ov 7278 . . . . 5 (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘) = (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))‘⟨𝑖, 𝑘⟩)
101 df-ov 7278 . . . . . 6 (𝑖(𝑋𝐹𝑌)𝑘) = ((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩)
102 df-ov 7278 . . . . . 6 (𝑖(𝑋𝐹𝑍)𝑘) = ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩)
103101, 102oveq12i 7287 . . . . 5 ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)) = (((𝑋𝐹𝑌)‘⟨𝑖, 𝑘⟩) + ((𝑋𝐹𝑍)‘⟨𝑖, 𝑘⟩))
10499, 100, 1033eqtr4g 2803 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘) = ((𝑖(𝑋𝐹𝑌)𝑘) + (𝑖(𝑋𝐹𝑍)𝑘)))
10576, 82, 1043eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘))
106105ralrimivva 3123 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘))
1071, 3, 63, 65, 7, 38, 10, 80mamucl 21548 . . . 4 (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
108 elmapi 8637 . . . 4 ((𝑋𝐹(𝑌f + 𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → (𝑋𝐹(𝑌f + 𝑍)):(𝑀 × 𝑂)⟶𝐵)
109 ffn 6600 . . . 4 ((𝑋𝐹(𝑌f + 𝑍)):(𝑀 × 𝑂)⟶𝐵 → (𝑋𝐹(𝑌f + 𝑍)) Fn (𝑀 × 𝑂))
110107, 108, 1093syl 18 . . 3 (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) Fn (𝑀 × 𝑂))
1111, 2mndvcl 21540 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑂)) ∧ (𝑋𝐹𝑍) ∈ (𝐵m (𝑀 × 𝑂))) → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
11278, 83, 88, 111syl3anc 1370 . . . 4 (𝜑 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)))
113 elmapi 8637 . . . 4 (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ∈ (𝐵m (𝑀 × 𝑂)) → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
114 ffn 6600 . . . 4 (((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
115112, 113, 1143syl 18 . . 3 (𝜑 → ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂))
116 eqfnov2 7404 . . 3 (((𝑋𝐹(𝑌f + 𝑍)) Fn (𝑀 × 𝑂) ∧ ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) Fn (𝑀 × 𝑂)) → ((𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘)))
117110, 115, 116syl2anc 584 . 2 (𝜑 → ((𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖(𝑋𝐹(𝑌f + 𝑍))𝑘) = (𝑖((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍))𝑘)))
118106, 117mpbird 256 1 (𝜑 → (𝑋𝐹(𝑌f + 𝑍)) = ((𝑋𝐹𝑌) ∘f + (𝑋𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  cop 4567  cotp 4569  cmpt 5157   × cxp 5587   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  m cmap 8615  Fincfn 8733  Basecbs 16912  +gcplusg 16962  .rcmulr 16963   Σg cgsu 17151  Mndcmnd 18385  CMndccmn 19386  Ringcrg 19783   maMul cmmul 21532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-ot 4570  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-grp 18580  df-minusg 18581  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-mamu 21533
This theorem is referenced by:  matring  21592
  Copyright terms: Public domain W3C validator