MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringnegr Structured version   Visualization version   GIF version

Theorem ringnegr 20263
Description: Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 37966 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringnegl.b 𝐵 = (Base‘𝑅)
ringnegl.t · = (.r𝑅)
ringnegl.u 1 = (1r𝑅)
ringnegl.n 𝑁 = (invg𝑅)
ringnegl.r (𝜑𝑅 ∈ Ring)
ringnegl.x (𝜑𝑋𝐵)
Assertion
Ref Expression
ringnegr (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))

Proof of Theorem ringnegr
StepHypRef Expression
1 ringnegl.r . . . . 5 (𝜑𝑅 ∈ Ring)
2 ringnegl.x . . . . 5 (𝜑𝑋𝐵)
3 ringgrp 20198 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
41, 3syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
5 ringnegl.b . . . . . . . 8 𝐵 = (Base‘𝑅)
6 ringnegl.u . . . . . . . 8 1 = (1r𝑅)
75, 6ringidcl 20225 . . . . . . 7 (𝑅 ∈ Ring → 1𝐵)
81, 7syl 17 . . . . . 6 (𝜑1𝐵)
9 ringnegl.n . . . . . . 7 𝑁 = (invg𝑅)
105, 9grpinvcl 18970 . . . . . 6 ((𝑅 ∈ Grp ∧ 1𝐵) → (𝑁1 ) ∈ 𝐵)
114, 8, 10syl2anc 584 . . . . 5 (𝜑 → (𝑁1 ) ∈ 𝐵)
12 eqid 2735 . . . . . 6 (+g𝑅) = (+g𝑅)
13 ringnegl.t . . . . . 6 · = (.r𝑅)
145, 12, 13ringdi 20221 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑁1 ) ∈ 𝐵1𝐵)) → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )))
151, 2, 11, 8, 14syl13anc 1374 . . . 4 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )))
16 eqid 2735 . . . . . . . 8 (0g𝑅) = (0g𝑅)
175, 12, 16, 9grplinv 18972 . . . . . . 7 ((𝑅 ∈ Grp ∧ 1𝐵) → ((𝑁1 )(+g𝑅) 1 ) = (0g𝑅))
184, 8, 17syl2anc 584 . . . . . 6 (𝜑 → ((𝑁1 )(+g𝑅) 1 ) = (0g𝑅))
1918oveq2d 7421 . . . . 5 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = (𝑋 · (0g𝑅)))
205, 13, 16ringrz 20254 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · (0g𝑅)) = (0g𝑅))
211, 2, 20syl2anc 584 . . . . 5 (𝜑 → (𝑋 · (0g𝑅)) = (0g𝑅))
2219, 21eqtrd 2770 . . . 4 (𝜑 → (𝑋 · ((𝑁1 )(+g𝑅) 1 )) = (0g𝑅))
235, 13, 6ringridm 20230 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
241, 2, 23syl2anc 584 . . . . 5 (𝜑 → (𝑋 · 1 ) = 𝑋)
2524oveq2d 7421 . . . 4 (𝜑 → ((𝑋 · (𝑁1 ))(+g𝑅)(𝑋 · 1 )) = ((𝑋 · (𝑁1 ))(+g𝑅)𝑋))
2615, 22, 253eqtr3rd 2779 . . 3 (𝜑 → ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅))
275, 13ringcl 20210 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝑁1 ) ∈ 𝐵) → (𝑋 · (𝑁1 )) ∈ 𝐵)
281, 2, 11, 27syl3anc 1373 . . . 4 (𝜑 → (𝑋 · (𝑁1 )) ∈ 𝐵)
295, 12, 16, 9grpinvid2 18975 . . . 4 ((𝑅 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑋 · (𝑁1 )) ∈ 𝐵) → ((𝑁𝑋) = (𝑋 · (𝑁1 )) ↔ ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅)))
304, 2, 28, 29syl3anc 1373 . . 3 (𝜑 → ((𝑁𝑋) = (𝑋 · (𝑁1 )) ↔ ((𝑋 · (𝑁1 ))(+g𝑅)𝑋) = (0g𝑅)))
3126, 30mpbird 257 . 2 (𝜑 → (𝑁𝑋) = (𝑋 · (𝑁1 )))
3231eqcomd 2741 1 (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  0gc0g 17453  Grpcgrp 18916  invgcminusg 18917  1rcur 20141  Ringcrg 20193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195
This theorem is referenced by:  ringmneg2  20265  irredneg  20390  lmodsubdi  20876  mdetunilem7  22556  ldualvsubval  39175  lcdvsubval  41637  mapdpglem30  41721
  Copyright terms: Public domain W3C validator