![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringnegr | Structured version Visualization version GIF version |
Description: Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 36601 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringnegl.b | ⊢ 𝐵 = (Base‘𝑅) |
ringnegl.t | ⊢ · = (.r‘𝑅) |
ringnegl.u | ⊢ 1 = (1r‘𝑅) |
ringnegl.n | ⊢ 𝑁 = (invg‘𝑅) |
ringnegl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringnegl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
ringnegr | ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringnegl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ringgrp 20018 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
4 | 1, 3 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
5 | ringnegl.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
6 | ringnegl.u | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
7 | 5, 6 | ringidcl 20039 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ 𝐵) |
8 | 1, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝐵) |
9 | ringnegl.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
10 | 5, 9 | grpinvcl 18846 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → (𝑁‘ 1 ) ∈ 𝐵) |
11 | 4, 8, 10 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑁‘ 1 ) ∈ 𝐵) |
12 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
13 | ringnegl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
14 | 5, 12, 13 | ringdi 20037 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵 ∧ 1 ∈ 𝐵)) → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 ))) |
15 | 1, 2, 11, 8, 14 | syl13anc 1372 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 ))) |
16 | eqid 2731 | . . . . . . . 8 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
17 | 5, 12, 16, 9 | grplinv 18848 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 1 ∈ 𝐵) → ((𝑁‘ 1 )(+g‘𝑅) 1 ) = (0g‘𝑅)) |
18 | 4, 8, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘ 1 )(+g‘𝑅) 1 ) = (0g‘𝑅)) |
19 | 18 | oveq2d 7408 | . . . . 5 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = (𝑋 · (0g‘𝑅))) |
20 | 5, 13, 16 | ringrz 20064 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
21 | 1, 2, 20 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑋 · (0g‘𝑅)) = (0g‘𝑅)) |
22 | 19, 21 | eqtrd 2771 | . . . 4 ⊢ (𝜑 → (𝑋 · ((𝑁‘ 1 )(+g‘𝑅) 1 )) = (0g‘𝑅)) |
23 | 5, 13, 6 | ringridm 20043 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 1 ) = 𝑋) |
24 | 1, 2, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑋 · 1 ) = 𝑋) |
25 | 24 | oveq2d 7408 | . . . 4 ⊢ (𝜑 → ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)(𝑋 · 1 )) = ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋)) |
26 | 15, 22, 25 | 3eqtr3rd 2780 | . . 3 ⊢ (𝜑 → ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅)) |
27 | 5, 13 | ringcl 20030 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘ 1 ) ∈ 𝐵) → (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) |
28 | 1, 2, 11, 27 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) |
29 | 5, 12, 16, 9 | grpinvid2 18851 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ (𝑋 · (𝑁‘ 1 )) ∈ 𝐵) → ((𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 )) ↔ ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅))) |
30 | 4, 2, 28, 29 | syl3anc 1371 | . . 3 ⊢ (𝜑 → ((𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 )) ↔ ((𝑋 · (𝑁‘ 1 ))(+g‘𝑅)𝑋) = (0g‘𝑅))) |
31 | 26, 30 | mpbird 256 | . 2 ⊢ (𝜑 → (𝑁‘𝑋) = (𝑋 · (𝑁‘ 1 ))) |
32 | 31 | eqcomd 2737 | 1 ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 ‘cfv 6531 (class class class)co 7392 Basecbs 17125 +gcplusg 17178 .rcmulr 17179 0gc0g 17366 Grpcgrp 18793 invgcminusg 18794 1rcur 19962 Ringcrg 20013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5291 ax-nul 5298 ax-pow 5355 ax-pr 5419 ax-un 7707 ax-cnex 11147 ax-resscn 11148 ax-1cn 11149 ax-icn 11150 ax-addcl 11151 ax-addrcl 11152 ax-mulcl 11153 ax-mulrcl 11154 ax-mulcom 11155 ax-addass 11156 ax-mulass 11157 ax-distr 11158 ax-i2m1 11159 ax-1ne0 11160 ax-1rid 11161 ax-rnegex 11162 ax-rrecex 11163 ax-cnre 11164 ax-pre-lttri 11165 ax-pre-lttrn 11166 ax-pre-ltadd 11167 ax-pre-mulgt0 11168 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3474 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4991 df-br 5141 df-opab 5203 df-mpt 5224 df-tr 5258 df-id 5566 df-eprel 5572 df-po 5580 df-so 5581 df-fr 5623 df-we 5625 df-xp 5674 df-rel 5675 df-cnv 5676 df-co 5677 df-dm 5678 df-rn 5679 df-res 5680 df-ima 5681 df-pred 6288 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7348 df-ov 7395 df-oprab 7396 df-mpo 7397 df-om 7838 df-2nd 7957 df-frecs 8247 df-wrecs 8278 df-recs 8352 df-rdg 8391 df-er 8685 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11231 df-mnf 11232 df-xr 11233 df-ltxr 11234 df-le 11235 df-sub 11427 df-neg 11428 df-nn 12194 df-2 12256 df-sets 17078 df-slot 17096 df-ndx 17108 df-base 17126 df-plusg 17191 df-0g 17368 df-mgm 18542 df-sgrp 18591 df-mnd 18602 df-grp 18796 df-minusg 18797 df-mgp 19946 df-ur 19963 df-ring 20015 |
This theorem is referenced by: ringmneg2 20073 irredneg 20193 lmodsubdi 20475 mdetunilem7 22046 ldualvsubval 37818 lcdvsubval 40280 mapdpglem30 40364 |
Copyright terms: Public domain | W3C validator |