![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringnegr | Structured version Visualization version GIF version |
Description: Negation in a ring is the same as right multiplication by -1. (rngonegmn1r 37323 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringnegl.b | โข ๐ต = (Baseโ๐ ) |
ringnegl.t | โข ยท = (.rโ๐ ) |
ringnegl.u | โข 1 = (1rโ๐ ) |
ringnegl.n | โข ๐ = (invgโ๐ ) |
ringnegl.r | โข (๐ โ ๐ โ Ring) |
ringnegl.x | โข (๐ โ ๐ โ ๐ต) |
Ref | Expression |
---|---|
ringnegr | โข (๐ โ (๐ ยท (๐โ 1 )) = (๐โ๐)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringnegl.r | . . . . 5 โข (๐ โ ๐ โ Ring) | |
2 | ringnegl.x | . . . . 5 โข (๐ โ ๐ โ ๐ต) | |
3 | ringgrp 20143 | . . . . . . 7 โข (๐ โ Ring โ ๐ โ Grp) | |
4 | 1, 3 | syl 17 | . . . . . 6 โข (๐ โ ๐ โ Grp) |
5 | ringnegl.b | . . . . . . . 8 โข ๐ต = (Baseโ๐ ) | |
6 | ringnegl.u | . . . . . . . 8 โข 1 = (1rโ๐ ) | |
7 | 5, 6 | ringidcl 20165 | . . . . . . 7 โข (๐ โ Ring โ 1 โ ๐ต) |
8 | 1, 7 | syl 17 | . . . . . 6 โข (๐ โ 1 โ ๐ต) |
9 | ringnegl.n | . . . . . . 7 โข ๐ = (invgโ๐ ) | |
10 | 5, 9 | grpinvcl 18917 | . . . . . 6 โข ((๐ โ Grp โง 1 โ ๐ต) โ (๐โ 1 ) โ ๐ต) |
11 | 4, 8, 10 | syl2anc 583 | . . . . 5 โข (๐ โ (๐โ 1 ) โ ๐ต) |
12 | eqid 2726 | . . . . . 6 โข (+gโ๐ ) = (+gโ๐ ) | |
13 | ringnegl.t | . . . . . 6 โข ยท = (.rโ๐ ) | |
14 | 5, 12, 13 | ringdi 20163 | . . . . 5 โข ((๐ โ Ring โง (๐ โ ๐ต โง (๐โ 1 ) โ ๐ต โง 1 โ ๐ต)) โ (๐ ยท ((๐โ 1 )(+gโ๐ ) 1 )) = ((๐ ยท (๐โ 1 ))(+gโ๐ )(๐ ยท 1 ))) |
15 | 1, 2, 11, 8, 14 | syl13anc 1369 | . . . 4 โข (๐ โ (๐ ยท ((๐โ 1 )(+gโ๐ ) 1 )) = ((๐ ยท (๐โ 1 ))(+gโ๐ )(๐ ยท 1 ))) |
16 | eqid 2726 | . . . . . . . 8 โข (0gโ๐ ) = (0gโ๐ ) | |
17 | 5, 12, 16, 9 | grplinv 18919 | . . . . . . 7 โข ((๐ โ Grp โง 1 โ ๐ต) โ ((๐โ 1 )(+gโ๐ ) 1 ) = (0gโ๐ )) |
18 | 4, 8, 17 | syl2anc 583 | . . . . . 6 โข (๐ โ ((๐โ 1 )(+gโ๐ ) 1 ) = (0gโ๐ )) |
19 | 18 | oveq2d 7421 | . . . . 5 โข (๐ โ (๐ ยท ((๐โ 1 )(+gโ๐ ) 1 )) = (๐ ยท (0gโ๐ ))) |
20 | 5, 13, 16 | ringrz 20193 | . . . . . 6 โข ((๐ โ Ring โง ๐ โ ๐ต) โ (๐ ยท (0gโ๐ )) = (0gโ๐ )) |
21 | 1, 2, 20 | syl2anc 583 | . . . . 5 โข (๐ โ (๐ ยท (0gโ๐ )) = (0gโ๐ )) |
22 | 19, 21 | eqtrd 2766 | . . . 4 โข (๐ โ (๐ ยท ((๐โ 1 )(+gโ๐ ) 1 )) = (0gโ๐ )) |
23 | 5, 13, 6 | ringridm 20169 | . . . . . 6 โข ((๐ โ Ring โง ๐ โ ๐ต) โ (๐ ยท 1 ) = ๐) |
24 | 1, 2, 23 | syl2anc 583 | . . . . 5 โข (๐ โ (๐ ยท 1 ) = ๐) |
25 | 24 | oveq2d 7421 | . . . 4 โข (๐ โ ((๐ ยท (๐โ 1 ))(+gโ๐ )(๐ ยท 1 )) = ((๐ ยท (๐โ 1 ))(+gโ๐ )๐)) |
26 | 15, 22, 25 | 3eqtr3rd 2775 | . . 3 โข (๐ โ ((๐ ยท (๐โ 1 ))(+gโ๐ )๐) = (0gโ๐ )) |
27 | 5, 13 | ringcl 20155 | . . . . 5 โข ((๐ โ Ring โง ๐ โ ๐ต โง (๐โ 1 ) โ ๐ต) โ (๐ ยท (๐โ 1 )) โ ๐ต) |
28 | 1, 2, 11, 27 | syl3anc 1368 | . . . 4 โข (๐ โ (๐ ยท (๐โ 1 )) โ ๐ต) |
29 | 5, 12, 16, 9 | grpinvid2 18922 | . . . 4 โข ((๐ โ Grp โง ๐ โ ๐ต โง (๐ ยท (๐โ 1 )) โ ๐ต) โ ((๐โ๐) = (๐ ยท (๐โ 1 )) โ ((๐ ยท (๐โ 1 ))(+gโ๐ )๐) = (0gโ๐ ))) |
30 | 4, 2, 28, 29 | syl3anc 1368 | . . 3 โข (๐ โ ((๐โ๐) = (๐ ยท (๐โ 1 )) โ ((๐ ยท (๐โ 1 ))(+gโ๐ )๐) = (0gโ๐ ))) |
31 | 26, 30 | mpbird 257 | . 2 โข (๐ โ (๐โ๐) = (๐ ยท (๐โ 1 ))) |
32 | 31 | eqcomd 2732 | 1 โข (๐ โ (๐ ยท (๐โ 1 )) = (๐โ๐)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 = wceq 1533 โ wcel 2098 โcfv 6537 (class class class)co 7405 Basecbs 17153 +gcplusg 17206 .rcmulr 17207 0gc0g 17394 Grpcgrp 18863 invgcminusg 18864 1rcur 20086 Ringcrg 20138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-minusg 18867 df-cmn 19702 df-abl 19703 df-mgp 20040 df-rng 20058 df-ur 20087 df-ring 20140 |
This theorem is referenced by: ringmneg2 20204 irredneg 20332 lmodsubdi 20765 mdetunilem7 22475 ldualvsubval 38540 lcdvsubval 41002 mapdpglem30 41086 |
Copyright terms: Public domain | W3C validator |