| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringcld | Structured version Visualization version GIF version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| ringcld.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringcld.t | ⊢ · = (.r‘𝑅) |
| ringcld.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringcld | ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringcld.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | ringcld.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 6 | 4, 5 | ringcl 20170 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 .rcmulr 17197 Ringcrg 20153 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mgm 18549 df-sgrp 18628 df-mnd 18644 df-mgp 20061 df-ring 20155 |
| This theorem is referenced by: gsumdixp 20239 xpsring1d 20253 rhmqusnsg 21227 rngqiprnglin 21244 frlmphl 21723 assa2ass 21805 assa2ass2 21806 assapropd 21814 rhmpsrlem2 21883 psrass1 21906 psrdi 21907 psrass23l 21909 psrass23 21911 mhpmulcl 22069 psdmul 22086 evls1fpws 22289 evls1muld 22292 evls1maprhm 22296 rhmcomulmpl 22302 rhmmpl 22303 mamuass 22322 mamuvs1 22325 mamuvs2 22326 mavmulass 22469 mdetrsca 22523 r1pid2 26100 elrgspnlem2 33210 elrgspnsubrunlem1 33214 erlbr2d 33231 erler 33232 rlocaddval 33235 rlocmulval 33236 rloccring 33237 rlocf1 33240 rrgsubm 33250 fracerl 33272 fracfld 33274 dvdsruasso 33349 rhmquskerlem 33389 elrspunsn 33393 ssdifidlprm 33422 mxidlirredi 33435 qsdrngilem 33458 rprmasso2 33490 unitmulrprm 33492 rprmirredlem 33494 1arithidomlem1 33499 1arithidomlem2 33500 1arithidom 33501 1arithufdlem2 33509 1arithufdlem3 33510 evl1deg1 33538 evl1deg2 33539 evl1deg3 33540 ply1dg1rt 33541 ply1mulrtss 33543 q1pdir 33561 q1pvsca 33562 r1pvsca 33563 r1pcyc 33565 r1padd1 33566 r1pid2OLD 33567 assalactf1o 33624 fldextrspunlsplem 33661 fldextrspunlsp 33662 irredminply 33699 rtelextdg2lem 33709 cos9thpiminplylem6 33770 cos9thpiminply 33771 ply1divalg3 35622 r1peuqusdeg1 35623 aks6d1c1p4 42092 drnginvmuld 42508 rhmcomulpsr 42532 rhmpsr 42533 evlsvvval 42544 evlsbagval 42547 evlsmaprhm 42551 evlmulval 42557 selvvvval 42566 evlselv 42568 selvmul 42570 evlsmhpvvval 42576 mhphf 42578 prjspertr 42586 prjspner1 42607 |
| Copyright terms: Public domain | W3C validator |