| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringcld | Structured version Visualization version GIF version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| ringcld.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringcld.t | ⊢ · = (.r‘𝑅) |
| ringcld.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringcld | ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringcld.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | ringcld.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 6 | 4, 5 | ringcl 20135 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 .rcmulr 17162 Ringcrg 20118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mgp 20026 df-ring 20120 |
| This theorem is referenced by: gsumdixp 20204 xpsring1d 20218 rhmqusnsg 21192 rngqiprnglin 21209 frlmphl 21688 assa2ass 21770 assa2ass2 21771 assapropd 21779 rhmpsrlem2 21848 psrass1 21871 psrdi 21872 psrass23l 21874 psrass23 21876 mhpmulcl 22034 psdmul 22051 evls1fpws 22254 evls1muld 22257 evls1maprhm 22261 rhmcomulmpl 22267 rhmmpl 22268 mamuass 22287 mamuvs1 22290 mamuvs2 22291 mavmulass 22434 mdetrsca 22488 r1pid2 26065 fxpsubrg 33116 elrgspnlem2 33183 elrgspnsubrunlem1 33187 erlbr2d 33204 erler 33205 rlocaddval 33208 rlocmulval 33209 rloccring 33210 rlocf1 33213 rrgsubm 33223 fracerl 33245 fracfld 33247 dvdsruasso 33322 rhmquskerlem 33362 elrspunsn 33366 ssdifidlprm 33395 mxidlirredi 33408 qsdrngilem 33431 rprmasso2 33463 unitmulrprm 33465 rprmirredlem 33467 1arithidomlem1 33472 1arithidomlem2 33473 1arithidom 33474 1arithufdlem2 33482 1arithufdlem3 33483 evl1deg1 33511 evl1deg2 33512 evl1deg3 33513 ply1dg1rt 33515 ply1mulrtss 33517 q1pdir 33535 q1pvsca 33536 r1pvsca 33537 r1pcyc 33539 r1padd1 33540 r1pid2OLD 33541 srapwov 33555 assalactf1o 33602 fldextrspunlsplem 33640 fldextrspunlsp 33641 irredminply 33683 rtelextdg2lem 33693 cos9thpiminplylem6 33754 cos9thpiminply 33755 ply1divalg3 35619 r1peuqusdeg1 35620 aks6d1c1p4 42088 drnginvmuld 42504 rhmcomulpsr 42528 rhmpsr 42529 evlsvvval 42540 evlsbagval 42543 evlsmaprhm 42547 evlmulval 42553 selvvvval 42562 evlselv 42564 selvmul 42566 evlsmhpvvval 42572 mhphf 42574 prjspertr 42582 prjspner1 42603 |
| Copyright terms: Public domain | W3C validator |