| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringcld | Structured version Visualization version GIF version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| ringcld.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringcld.t | ⊢ · = (.r‘𝑅) |
| ringcld.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringcld | ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringcld.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | ringcld.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 6 | 4, 5 | ringcl 20159 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 .rcmulr 17221 Ringcrg 20142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mgp 20050 df-ring 20144 |
| This theorem is referenced by: gsumdixp 20228 xpsring1d 20242 rhmqusnsg 21195 rngqiprnglin 21212 frlmphl 21690 assa2ass 21772 assa2ass2 21773 assapropd 21781 rhmpsrlem2 21850 psrass1 21873 psrdi 21874 psrass23l 21876 psrass23 21878 mhpmulcl 22036 psdmul 22053 evls1fpws 22256 evls1muld 22259 evls1maprhm 22263 rhmcomulmpl 22269 rhmmpl 22270 mamuass 22289 mamuvs1 22292 mamuvs2 22293 mavmulass 22436 mdetrsca 22490 r1pid2 26067 elrgspnlem2 33194 elrgspnsubrunlem1 33198 erlbr2d 33215 erler 33216 rlocaddval 33219 rlocmulval 33220 rloccring 33221 rlocf1 33224 rrgsubm 33234 fracerl 33256 fracfld 33258 dvdsruasso 33356 rhmquskerlem 33396 elrspunsn 33400 ssdifidlprm 33429 mxidlirredi 33442 qsdrngilem 33465 rprmasso2 33497 unitmulrprm 33499 rprmirredlem 33501 1arithidomlem1 33506 1arithidomlem2 33507 1arithidom 33508 1arithufdlem2 33516 1arithufdlem3 33517 evl1deg1 33545 evl1deg2 33546 evl1deg3 33547 ply1dg1rt 33548 ply1mulrtss 33550 q1pdir 33568 q1pvsca 33569 r1pvsca 33570 r1pcyc 33572 r1padd1 33573 r1pid2OLD 33574 assalactf1o 33631 fldextrspunlsplem 33668 fldextrspunlsp 33669 irredminply 33706 rtelextdg2lem 33716 cos9thpiminplylem6 33777 cos9thpiminply 33778 ply1divalg3 35629 r1peuqusdeg1 35630 aks6d1c1p4 42099 drnginvmuld 42515 rhmcomulpsr 42539 rhmpsr 42540 evlsvvval 42551 evlsbagval 42554 evlsmaprhm 42558 evlmulval 42564 selvvvval 42573 evlselv 42575 selvmul 42577 evlsmhpvvval 42583 mhphf 42585 prjspertr 42593 prjspner1 42614 |
| Copyright terms: Public domain | W3C validator |