| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringcld | Structured version Visualization version GIF version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by SN, 29-Jul-2024.) |
| Ref | Expression |
|---|---|
| ringcld.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringcld.t | ⊢ · = (.r‘𝑅) |
| ringcld.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ringcld.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ringcld.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ringcld | ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringcld.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 2 | ringcld.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | ringcld.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | ringcld.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | ringcld.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 6 | 4, 5 | ringcl 20168 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 7 | 1, 2, 3, 6 | syl3anc 1373 | 1 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 Ringcrg 20151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mgp 20059 df-ring 20153 |
| This theorem is referenced by: gsumdixp 20237 xpsring1d 20251 rhmqusnsg 21222 rngqiprnglin 21239 frlmphl 21718 assa2ass 21800 assa2ass2 21801 assapropd 21809 rhmpsrlem2 21878 psrass1 21901 psrdi 21902 psrass23l 21904 psrass23 21906 mhpmulcl 22064 psdmul 22081 evls1fpws 22284 evls1muld 22287 evls1maprhm 22291 rhmcomulmpl 22297 rhmmpl 22298 mamuass 22317 mamuvs1 22320 mamuvs2 22321 mavmulass 22464 mdetrsca 22518 r1pid2 26094 fxpsubrg 33143 elrgspnlem2 33210 elrgspnsubrunlem1 33214 erlbr2d 33231 erler 33232 rlocaddval 33235 rlocmulval 33236 rloccring 33237 rlocf1 33240 rrgsubm 33250 fracerl 33272 fracfld 33274 dvdsruasso 33350 rhmquskerlem 33390 elrspunsn 33394 ssdifidlprm 33423 mxidlirredi 33436 qsdrngilem 33459 rprmasso2 33491 unitmulrprm 33493 rprmirredlem 33495 1arithidomlem1 33500 1arithidomlem2 33501 1arithidom 33502 1arithufdlem2 33510 1arithufdlem3 33511 evl1deg1 33539 evl1deg2 33540 evl1deg3 33541 ply1dg1rt 33543 ply1mulrtss 33545 q1pdir 33563 q1pvsca 33564 r1pvsca 33565 r1pcyc 33567 r1padd1 33568 r1pid2OLD 33569 mplvrpmrhm 33577 srapwov 33601 assalactf1o 33648 fldextrspunlsplem 33686 fldextrspunlsp 33687 irredminply 33729 rtelextdg2lem 33739 cos9thpiminplylem6 33800 cos9thpiminply 33801 ply1divalg3 35686 r1peuqusdeg1 35687 aks6d1c1p4 42214 drnginvmuld 42630 rhmcomulpsr 42654 rhmpsr 42655 evlsvvval 42666 evlsbagval 42669 evlsmaprhm 42673 evlmulval 42679 selvvvval 42688 evlselv 42690 selvmul 42692 evlsmhpvvval 42698 mhphf 42700 prjspertr 42708 prjspner1 42729 |
| Copyright terms: Public domain | W3C validator |