Step | Hyp | Ref
| Expression |
1 | | sralmod.a |
. . . 4
⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
3 | | eqid 2738 |
. . . 4
⊢
(Base‘𝑊) =
(Base‘𝑊) |
4 | 3 | subrgss 19940 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊)) |
5 | 2, 4 | srabase 20356 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝐴)) |
6 | 2, 4 | sraaddg 20358 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) →
(+g‘𝑊) =
(+g‘𝐴)) |
7 | 2, 4 | srasca 20362 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
8 | 2, 4 | sravsca 20363 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) →
(.r‘𝑊) = (
·𝑠 ‘𝐴)) |
9 | | eqid 2738 |
. . 3
⊢ (𝑊 ↾s 𝑆) = (𝑊 ↾s 𝑆) |
10 | 9, 3 | ressbas 16873 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑆 ∩ (Base‘𝑊)) = (Base‘(𝑊 ↾s 𝑆))) |
11 | | eqid 2738 |
. . 3
⊢
(+g‘𝑊) = (+g‘𝑊) |
12 | 9, 11 | ressplusg 16926 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) →
(+g‘𝑊) =
(+g‘(𝑊
↾s 𝑆))) |
13 | | eqid 2738 |
. . 3
⊢
(.r‘𝑊) = (.r‘𝑊) |
14 | 9, 13 | ressmulr 16943 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) →
(.r‘𝑊) =
(.r‘(𝑊
↾s 𝑆))) |
15 | | eqid 2738 |
. . 3
⊢
(1r‘𝑊) = (1r‘𝑊) |
16 | 9, 15 | subrg1 19949 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) →
(1r‘𝑊) =
(1r‘(𝑊
↾s 𝑆))) |
17 | 9 | subrgring 19942 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑊 ↾s 𝑆) ∈ Ring) |
18 | | subrgrcl 19944 |
. . . 4
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Ring) |
19 | | ringgrp 19703 |
. . . 4
⊢ (𝑊 ∈ Ring → 𝑊 ∈ Grp) |
20 | 18, 19 | syl 17 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Grp) |
21 | | eqidd 2739 |
. . . 4
⊢ (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝑊)) |
22 | 6 | oveqdr 7283 |
. . . 4
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘𝐴)𝑦)) |
23 | 21, 5, 22 | grppropd 18509 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑊 ∈ Grp ↔ 𝐴 ∈ Grp)) |
24 | 20, 23 | mpbid 231 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ Grp) |
25 | 18 | 3ad2ant1 1131 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring) |
26 | | elinel2 4126 |
. . . 4
⊢ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊)) |
27 | 26 | 3ad2ant2 1132 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊)) |
28 | | simp3 1136 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊)) |
29 | 3, 13 | ringcl 19715 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r‘𝑊)𝑦) ∈ (Base‘𝑊)) |
30 | 25, 27, 28, 29 | syl3anc 1369 |
. 2
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r‘𝑊)𝑦) ∈ (Base‘𝑊)) |
31 | 18 | adantr 480 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring) |
32 | | simpr1 1192 |
. . . 4
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊))) |
33 | 32 | elin2d 4129 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) |
34 | | simpr2 1193 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
35 | | simpr3 1194 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊)) |
36 | 3, 11, 13 | ringdi 19720 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)(𝑦(+g‘𝑊)𝑧)) = ((𝑥(.r‘𝑊)𝑦)(+g‘𝑊)(𝑥(.r‘𝑊)𝑧))) |
37 | 31, 33, 34, 35, 36 | syl13anc 1370 |
. 2
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)(𝑦(+g‘𝑊)𝑧)) = ((𝑥(.r‘𝑊)𝑦)(+g‘𝑊)(𝑥(.r‘𝑊)𝑧))) |
38 | 18 | adantr 480 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring) |
39 | | simpr1 1192 |
. . . 4
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊))) |
40 | 39 | elin2d 4129 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) |
41 | | simpr2 1193 |
. . . 4
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (𝑆 ∩ (Base‘𝑊))) |
42 | 41 | elin2d 4129 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
43 | | simpr3 1194 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊)) |
44 | 3, 11, 13 | ringdir 19721 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g‘𝑊)𝑦)(.r‘𝑊)𝑧) = ((𝑥(.r‘𝑊)𝑧)(+g‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
45 | 38, 40, 42, 43, 44 | syl13anc 1370 |
. 2
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g‘𝑊)𝑦)(.r‘𝑊)𝑧) = ((𝑥(.r‘𝑊)𝑧)(+g‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
46 | 3, 13 | ringass 19718 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥(.r‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
47 | 38, 40, 42, 43, 46 | syl13anc 1370 |
. 2
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥(.r‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
48 | 3, 13, 15 | ringlidm 19725 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊)) →
((1r‘𝑊)(.r‘𝑊)𝑥) = 𝑥) |
49 | 18, 48 | sylan 579 |
. 2
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊)) → ((1r‘𝑊)(.r‘𝑊)𝑥) = 𝑥) |
50 | 5, 6, 7, 8, 10, 12, 14, 16, 17, 24, 30, 37, 45, 47, 49 | islmodd 20044 |
1
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod) |