MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralmod Structured version   Visualization version   GIF version

Theorem sralmod 20801
Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
sralmod.a 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†)
Assertion
Ref Expression
sralmod (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝐴 ∈ LMod)

Proof of Theorem sralmod
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sralmod.a . . . 4 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†)
21a1i 11 . . 3 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝐴 = ((subringAlg β€˜π‘Š)β€˜π‘†))
3 eqid 2732 . . . 4 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
43subrgss 20356 . . 3 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝑆 βŠ† (Baseβ€˜π‘Š))
52, 4srabase 20784 . 2 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π΄))
62, 4sraaddg 20786 . 2 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (+gβ€˜π‘Š) = (+gβ€˜π΄))
72, 4srasca 20790 . 2 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (π‘Š β†Ύs 𝑆) = (Scalarβ€˜π΄))
82, 4sravsca 20792 . 2 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (.rβ€˜π‘Š) = ( ·𝑠 β€˜π΄))
9 eqid 2732 . . 3 (π‘Š β†Ύs 𝑆) = (π‘Š β†Ύs 𝑆)
109, 3ressbas 17175 . 2 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (𝑆 ∩ (Baseβ€˜π‘Š)) = (Baseβ€˜(π‘Š β†Ύs 𝑆)))
11 eqid 2732 . . 3 (+gβ€˜π‘Š) = (+gβ€˜π‘Š)
129, 11ressplusg 17231 . 2 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (+gβ€˜π‘Š) = (+gβ€˜(π‘Š β†Ύs 𝑆)))
13 eqid 2732 . . 3 (.rβ€˜π‘Š) = (.rβ€˜π‘Š)
149, 13ressmulr 17248 . 2 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (.rβ€˜π‘Š) = (.rβ€˜(π‘Š β†Ύs 𝑆)))
15 eqid 2732 . . 3 (1rβ€˜π‘Š) = (1rβ€˜π‘Š)
169, 15subrg1 20365 . 2 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (1rβ€˜π‘Š) = (1rβ€˜(π‘Š β†Ύs 𝑆)))
179subrgring 20358 . 2 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (π‘Š β†Ύs 𝑆) ∈ Ring)
18 subrgrcl 20360 . . . 4 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ π‘Š ∈ Ring)
19 ringgrp 20054 . . . 4 (π‘Š ∈ Ring β†’ π‘Š ∈ Grp)
2018, 19syl 17 . . 3 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ π‘Š ∈ Grp)
21 eqidd 2733 . . . 4 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š))
226oveqdr 7433 . . . 4 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š))) β†’ (π‘₯(+gβ€˜π‘Š)𝑦) = (π‘₯(+gβ€˜π΄)𝑦))
2321, 5, 22grppropd 18833 . . 3 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ (π‘Š ∈ Grp ↔ 𝐴 ∈ Grp))
2420, 23mpbid 231 . 2 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝐴 ∈ Grp)
25183ad2ant1 1133 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š)) β†’ π‘Š ∈ Ring)
26 elinel2 4195 . . . 4 (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) β†’ π‘₯ ∈ (Baseβ€˜π‘Š))
27263ad2ant2 1134 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š)) β†’ π‘₯ ∈ (Baseβ€˜π‘Š))
28 simp3 1138 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š)) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
293, 13ringcl 20066 . . 3 ((π‘Š ∈ Ring ∧ π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š)) β†’ (π‘₯(.rβ€˜π‘Š)𝑦) ∈ (Baseβ€˜π‘Š))
3025, 27, 28, 29syl3anc 1371 . 2 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š)) β†’ (π‘₯(.rβ€˜π‘Š)𝑦) ∈ (Baseβ€˜π‘Š))
3118adantr 481 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘Š ∈ Ring)
32 simpr1 1194 . . . 4 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)))
3332elin2d 4198 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘₯ ∈ (Baseβ€˜π‘Š))
34 simpr2 1195 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
35 simpr3 1196 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑧 ∈ (Baseβ€˜π‘Š))
363, 11, 13ringdi 20074 . . 3 ((π‘Š ∈ Ring ∧ (π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ (π‘₯(.rβ€˜π‘Š)(𝑦(+gβ€˜π‘Š)𝑧)) = ((π‘₯(.rβ€˜π‘Š)𝑦)(+gβ€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑧)))
3731, 33, 34, 35, 36syl13anc 1372 . 2 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ (π‘₯(.rβ€˜π‘Š)(𝑦(+gβ€˜π‘Š)𝑧)) = ((π‘₯(.rβ€˜π‘Š)𝑦)(+gβ€˜π‘Š)(π‘₯(.rβ€˜π‘Š)𝑧)))
3818adantr 481 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘Š ∈ Ring)
39 simpr1 1194 . . . 4 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)))
4039elin2d 4198 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ π‘₯ ∈ (Baseβ€˜π‘Š))
41 simpr2 1195 . . . 4 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑦 ∈ (𝑆 ∩ (Baseβ€˜π‘Š)))
4241elin2d 4198 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑦 ∈ (Baseβ€˜π‘Š))
43 simpr3 1196 . . 3 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ 𝑧 ∈ (Baseβ€˜π‘Š))
443, 11, 13ringdir 20075 . . 3 ((π‘Š ∈ Ring ∧ (π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((π‘₯(+gβ€˜π‘Š)𝑦)(.rβ€˜π‘Š)𝑧) = ((π‘₯(.rβ€˜π‘Š)𝑧)(+gβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
4538, 40, 42, 43, 44syl13anc 1372 . 2 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((π‘₯(+gβ€˜π‘Š)𝑦)(.rβ€˜π‘Š)𝑧) = ((π‘₯(.rβ€˜π‘Š)𝑧)(+gβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
463, 13ringass 20069 . . 3 ((π‘Š ∈ Ring ∧ (π‘₯ ∈ (Baseβ€˜π‘Š) ∧ 𝑦 ∈ (Baseβ€˜π‘Š) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((π‘₯(.rβ€˜π‘Š)𝑦)(.rβ€˜π‘Š)𝑧) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
4738, 40, 42, 43, 46syl13anc 1372 . 2 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ (π‘₯ ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑦 ∈ (𝑆 ∩ (Baseβ€˜π‘Š)) ∧ 𝑧 ∈ (Baseβ€˜π‘Š))) β†’ ((π‘₯(.rβ€˜π‘Š)𝑦)(.rβ€˜π‘Š)𝑧) = (π‘₯(.rβ€˜π‘Š)(𝑦(.rβ€˜π‘Š)𝑧)))
483, 13, 15ringlidm 20079 . . 3 ((π‘Š ∈ Ring ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ ((1rβ€˜π‘Š)(.rβ€˜π‘Š)π‘₯) = π‘₯)
4918, 48sylan 580 . 2 ((𝑆 ∈ (SubRingβ€˜π‘Š) ∧ π‘₯ ∈ (Baseβ€˜π‘Š)) β†’ ((1rβ€˜π‘Š)(.rβ€˜π‘Š)π‘₯) = π‘₯)
505, 6, 7, 8, 10, 12, 14, 16, 17, 24, 30, 37, 45, 47, 49islmodd 20469 1 (𝑆 ∈ (SubRingβ€˜π‘Š) β†’ 𝐴 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   ∩ cin 3946  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140   β†Ύs cress 17169  +gcplusg 17193  .rcmulr 17194  Grpcgrp 18815  1rcur 19998  Ringcrg 20049  SubRingcsubrg 20351  LModclmod 20463  subringAlg csra 20773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-subg 18997  df-mgp 19982  df-ur 19999  df-ring 20051  df-subrg 20353  df-lmod 20465  df-sra 20777
This theorem is referenced by:  rlmlmod  20819  sraassab  21413  sraassaOLD  21415  sranlm  24192  sralvec  32663  evls1maplmhm  32748
  Copyright terms: Public domain W3C validator