| Step | Hyp | Ref
| Expression |
| 1 | | sralmod.a |
. . . 4
⊢ 𝐴 = ((subringAlg ‘𝑊)‘𝑆) |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆)) |
| 3 | | eqid 2736 |
. . . 4
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 4 | 3 | subrgss 20573 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊)) |
| 5 | 2, 4 | srabase 21178 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝐴)) |
| 6 | 2, 4 | sraaddg 21180 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) →
(+g‘𝑊) =
(+g‘𝐴)) |
| 7 | 2, 4 | srasca 21184 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑊 ↾s 𝑆) = (Scalar‘𝐴)) |
| 8 | 2, 4 | sravsca 21186 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) →
(.r‘𝑊) = (
·𝑠 ‘𝐴)) |
| 9 | | eqid 2736 |
. . 3
⊢ (𝑊 ↾s 𝑆) = (𝑊 ↾s 𝑆) |
| 10 | 9, 3 | ressbas 17281 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑆 ∩ (Base‘𝑊)) = (Base‘(𝑊 ↾s 𝑆))) |
| 11 | | eqid 2736 |
. . 3
⊢
(+g‘𝑊) = (+g‘𝑊) |
| 12 | 9, 11 | ressplusg 17335 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) →
(+g‘𝑊) =
(+g‘(𝑊
↾s 𝑆))) |
| 13 | | eqid 2736 |
. . 3
⊢
(.r‘𝑊) = (.r‘𝑊) |
| 14 | 9, 13 | ressmulr 17352 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) →
(.r‘𝑊) =
(.r‘(𝑊
↾s 𝑆))) |
| 15 | | eqid 2736 |
. . 3
⊢
(1r‘𝑊) = (1r‘𝑊) |
| 16 | 9, 15 | subrg1 20583 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) →
(1r‘𝑊) =
(1r‘(𝑊
↾s 𝑆))) |
| 17 | 9 | subrgring 20575 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑊 ↾s 𝑆) ∈ Ring) |
| 18 | | subrgrcl 20577 |
. . . 4
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Ring) |
| 19 | | ringgrp 20236 |
. . . 4
⊢ (𝑊 ∈ Ring → 𝑊 ∈ Grp) |
| 20 | 18, 19 | syl 17 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Grp) |
| 21 | | eqidd 2737 |
. . . 4
⊢ (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝑊)) |
| 22 | 6 | oveqdr 7460 |
. . . 4
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g‘𝑊)𝑦) = (𝑥(+g‘𝐴)𝑦)) |
| 23 | 21, 5, 22 | grppropd 18970 |
. . 3
⊢ (𝑆 ∈ (SubRing‘𝑊) → (𝑊 ∈ Grp ↔ 𝐴 ∈ Grp)) |
| 24 | 20, 23 | mpbid 232 |
. 2
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ Grp) |
| 25 | 18 | 3ad2ant1 1133 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring) |
| 26 | | elinel2 4201 |
. . . 4
⊢ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊)) |
| 27 | 26 | 3ad2ant2 1134 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊)) |
| 28 | | simp3 1138 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊)) |
| 29 | 3, 13 | ringcl 20248 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r‘𝑊)𝑦) ∈ (Base‘𝑊)) |
| 30 | 25, 27, 28, 29 | syl3anc 1372 |
. 2
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r‘𝑊)𝑦) ∈ (Base‘𝑊)) |
| 31 | 18 | adantr 480 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring) |
| 32 | | simpr1 1194 |
. . . 4
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊))) |
| 33 | 32 | elin2d 4204 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) |
| 34 | | simpr2 1195 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
| 35 | | simpr3 1196 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊)) |
| 36 | 3, 11, 13 | ringdi 20259 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)(𝑦(+g‘𝑊)𝑧)) = ((𝑥(.r‘𝑊)𝑦)(+g‘𝑊)(𝑥(.r‘𝑊)𝑧))) |
| 37 | 31, 33, 34, 35, 36 | syl13anc 1373 |
. 2
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r‘𝑊)(𝑦(+g‘𝑊)𝑧)) = ((𝑥(.r‘𝑊)𝑦)(+g‘𝑊)(𝑥(.r‘𝑊)𝑧))) |
| 38 | 18 | adantr 480 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring) |
| 39 | | simpr1 1194 |
. . . 4
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊))) |
| 40 | 39 | elin2d 4204 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊)) |
| 41 | | simpr2 1195 |
. . . 4
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (𝑆 ∩ (Base‘𝑊))) |
| 42 | 41 | elin2d 4204 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊)) |
| 43 | | simpr3 1196 |
. . 3
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊)) |
| 44 | 3, 11, 13 | ringdir 20260 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g‘𝑊)𝑦)(.r‘𝑊)𝑧) = ((𝑥(.r‘𝑊)𝑧)(+g‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
| 45 | 38, 40, 42, 43, 44 | syl13anc 1373 |
. 2
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g‘𝑊)𝑦)(.r‘𝑊)𝑧) = ((𝑥(.r‘𝑊)𝑧)(+g‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
| 46 | 3, 13 | ringass 20251 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥(.r‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
| 47 | 38, 40, 42, 43, 46 | syl13anc 1373 |
. 2
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r‘𝑊)𝑦)(.r‘𝑊)𝑧) = (𝑥(.r‘𝑊)(𝑦(.r‘𝑊)𝑧))) |
| 48 | 3, 13, 15 | ringlidm 20267 |
. . 3
⊢ ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊)) →
((1r‘𝑊)(.r‘𝑊)𝑥) = 𝑥) |
| 49 | 18, 48 | sylan 580 |
. 2
⊢ ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊)) → ((1r‘𝑊)(.r‘𝑊)𝑥) = 𝑥) |
| 50 | 5, 6, 7, 8, 10, 12, 14, 16, 17, 24, 30, 37, 45, 47, 49 | islmodd 20865 |
1
⊢ (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod) |