MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralmod Structured version   Visualization version   GIF version

Theorem sralmod 21195
Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
sralmod.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
Assertion
Ref Expression
sralmod (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)

Proof of Theorem sralmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sralmod.a . . . 4 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
21a1i 11 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 eqid 2736 . . . 4 (Base‘𝑊) = (Base‘𝑊)
43subrgss 20573 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
52, 4srabase 21178 . 2 (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝐴))
62, 4sraaddg 21180 . 2 (𝑆 ∈ (SubRing‘𝑊) → (+g𝑊) = (+g𝐴))
72, 4srasca 21184 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑊s 𝑆) = (Scalar‘𝐴))
82, 4sravsca 21186 . 2 (𝑆 ∈ (SubRing‘𝑊) → (.r𝑊) = ( ·𝑠𝐴))
9 eqid 2736 . . 3 (𝑊s 𝑆) = (𝑊s 𝑆)
109, 3ressbas 17281 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑆 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝑆)))
11 eqid 2736 . . 3 (+g𝑊) = (+g𝑊)
129, 11ressplusg 17335 . 2 (𝑆 ∈ (SubRing‘𝑊) → (+g𝑊) = (+g‘(𝑊s 𝑆)))
13 eqid 2736 . . 3 (.r𝑊) = (.r𝑊)
149, 13ressmulr 17352 . 2 (𝑆 ∈ (SubRing‘𝑊) → (.r𝑊) = (.r‘(𝑊s 𝑆)))
15 eqid 2736 . . 3 (1r𝑊) = (1r𝑊)
169, 15subrg1 20583 . 2 (𝑆 ∈ (SubRing‘𝑊) → (1r𝑊) = (1r‘(𝑊s 𝑆)))
179subrgring 20575 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑊s 𝑆) ∈ Ring)
18 subrgrcl 20577 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Ring)
19 ringgrp 20236 . . . 4 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
2018, 19syl 17 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Grp)
21 eqidd 2737 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝑊))
226oveqdr 7460 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐴)𝑦))
2321, 5, 22grppropd 18970 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (𝑊 ∈ Grp ↔ 𝐴 ∈ Grp))
2420, 23mpbid 232 . 2 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ Grp)
25183ad2ant1 1133 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring)
26 elinel2 4201 . . . 4 (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
27263ad2ant2 1134 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
28 simp3 1138 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
293, 13ringcl 20248 . . 3 ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) ∈ (Base‘𝑊))
3025, 27, 28, 29syl3anc 1372 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) ∈ (Base‘𝑊))
3118adantr 480 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
32 simpr1 1194 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)))
3332elin2d 4204 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
34 simpr2 1195 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
35 simpr3 1196 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
363, 11, 13ringdi 20259 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)(𝑦(+g𝑊)𝑧)) = ((𝑥(.r𝑊)𝑦)(+g𝑊)(𝑥(.r𝑊)𝑧)))
3731, 33, 34, 35, 36syl13anc 1373 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)(𝑦(+g𝑊)𝑧)) = ((𝑥(.r𝑊)𝑦)(+g𝑊)(𝑥(.r𝑊)𝑧)))
3818adantr 480 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
39 simpr1 1194 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)))
4039elin2d 4204 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
41 simpr2 1195 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)))
4241elin2d 4204 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
43 simpr3 1196 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
443, 11, 13ringdir 20260 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)(.r𝑊)𝑧) = ((𝑥(.r𝑊)𝑧)(+g𝑊)(𝑦(.r𝑊)𝑧)))
4538, 40, 42, 43, 44syl13anc 1373 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)(.r𝑊)𝑧) = ((𝑥(.r𝑊)𝑧)(+g𝑊)(𝑦(.r𝑊)𝑧)))
463, 13ringass 20251 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
4738, 40, 42, 43, 46syl13anc 1373 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
483, 13, 15ringlidm 20267 . . 3 ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊)) → ((1r𝑊)(.r𝑊)𝑥) = 𝑥)
4918, 48sylan 580 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊)) → ((1r𝑊)(.r𝑊)𝑥) = 𝑥)
505, 6, 7, 8, 10, 12, 14, 16, 17, 24, 30, 37, 45, 47, 49islmodd 20865 1 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cin 3949  cfv 6560  (class class class)co 7432  Basecbs 17248  s cress 17275  +gcplusg 17298  .rcmulr 17299  Grpcgrp 18952  1rcur 20179  Ringcrg 20231  SubRingcsubrg 20570  LModclmod 20859  subringAlg csra 21171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-subg 19142  df-mgp 20139  df-ur 20180  df-ring 20233  df-subrg 20571  df-lmod 20861  df-sra 21173
This theorem is referenced by:  rlmlmod  21211  sraassab  21889  sraassaOLD  21891  evls1maplmhm  22382  sranlm  24706  sralvec  33637  lsssra  33640  fldextrspunlsplem  33724  fldextrspunlsp  33725  fldextrspunlem1  33726  fldextrspunfld  33727  algextdeglem2  33760
  Copyright terms: Public domain W3C validator