MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sralmod Structured version   Visualization version   GIF version

Theorem sralmod 21100
Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014.)
Hypothesis
Ref Expression
sralmod.a 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
Assertion
Ref Expression
sralmod (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)

Proof of Theorem sralmod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sralmod.a . . . 4 𝐴 = ((subringAlg ‘𝑊)‘𝑆)
21a1i 11 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 = ((subringAlg ‘𝑊)‘𝑆))
3 eqid 2730 . . . 4 (Base‘𝑊) = (Base‘𝑊)
43subrgss 20487 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑆 ⊆ (Base‘𝑊))
52, 4srabase 21090 . 2 (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝐴))
62, 4sraaddg 21091 . 2 (𝑆 ∈ (SubRing‘𝑊) → (+g𝑊) = (+g𝐴))
72, 4srasca 21093 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑊s 𝑆) = (Scalar‘𝐴))
82, 4sravsca 21094 . 2 (𝑆 ∈ (SubRing‘𝑊) → (.r𝑊) = ( ·𝑠𝐴))
9 eqid 2730 . . 3 (𝑊s 𝑆) = (𝑊s 𝑆)
109, 3ressbas 17212 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑆 ∩ (Base‘𝑊)) = (Base‘(𝑊s 𝑆)))
11 eqid 2730 . . 3 (+g𝑊) = (+g𝑊)
129, 11ressplusg 17260 . 2 (𝑆 ∈ (SubRing‘𝑊) → (+g𝑊) = (+g‘(𝑊s 𝑆)))
13 eqid 2730 . . 3 (.r𝑊) = (.r𝑊)
149, 13ressmulr 17276 . 2 (𝑆 ∈ (SubRing‘𝑊) → (.r𝑊) = (.r‘(𝑊s 𝑆)))
15 eqid 2730 . . 3 (1r𝑊) = (1r𝑊)
169, 15subrg1 20497 . 2 (𝑆 ∈ (SubRing‘𝑊) → (1r𝑊) = (1r‘(𝑊s 𝑆)))
179subrgring 20489 . 2 (𝑆 ∈ (SubRing‘𝑊) → (𝑊s 𝑆) ∈ Ring)
18 subrgrcl 20491 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Ring)
19 ringgrp 20153 . . . 4 (𝑊 ∈ Ring → 𝑊 ∈ Grp)
2018, 19syl 17 . . 3 (𝑆 ∈ (SubRing‘𝑊) → 𝑊 ∈ Grp)
21 eqidd 2731 . . . 4 (𝑆 ∈ (SubRing‘𝑊) → (Base‘𝑊) = (Base‘𝑊))
226oveqdr 7417 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊))) → (𝑥(+g𝑊)𝑦) = (𝑥(+g𝐴)𝑦))
2321, 5, 22grppropd 18889 . . 3 (𝑆 ∈ (SubRing‘𝑊) → (𝑊 ∈ Grp ↔ 𝐴 ∈ Grp))
2420, 23mpbid 232 . 2 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ Grp)
25183ad2ant1 1133 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑊 ∈ Ring)
26 elinel2 4167 . . . 4 (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
27263ad2ant2 1134 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑥 ∈ (Base‘𝑊))
28 simp3 1138 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → 𝑦 ∈ (Base‘𝑊))
293, 13ringcl 20165 . . 3 ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) ∈ (Base‘𝑊))
3025, 27, 28, 29syl3anc 1373 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊)) → (𝑥(.r𝑊)𝑦) ∈ (Base‘𝑊))
3118adantr 480 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
32 simpr1 1195 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)))
3332elin2d 4170 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
34 simpr2 1196 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
35 simpr3 1197 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
363, 11, 13ringdi 20176 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)(𝑦(+g𝑊)𝑧)) = ((𝑥(.r𝑊)𝑦)(+g𝑊)(𝑥(.r𝑊)𝑧)))
3731, 33, 34, 35, 36syl13anc 1374 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → (𝑥(.r𝑊)(𝑦(+g𝑊)𝑧)) = ((𝑥(.r𝑊)𝑦)(+g𝑊)(𝑥(.r𝑊)𝑧)))
3818adantr 480 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑊 ∈ Ring)
39 simpr1 1195 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (𝑆 ∩ (Base‘𝑊)))
4039elin2d 4170 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑥 ∈ (Base‘𝑊))
41 simpr2 1196 . . . 4 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)))
4241elin2d 4170 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑦 ∈ (Base‘𝑊))
43 simpr3 1197 . . 3 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → 𝑧 ∈ (Base‘𝑊))
443, 11, 13ringdir 20177 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)(.r𝑊)𝑧) = ((𝑥(.r𝑊)𝑧)(+g𝑊)(𝑦(.r𝑊)𝑧)))
4538, 40, 42, 43, 44syl13anc 1374 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(+g𝑊)𝑦)(.r𝑊)𝑧) = ((𝑥(.r𝑊)𝑧)(+g𝑊)(𝑦(.r𝑊)𝑧)))
463, 13ringass 20168 . . 3 ((𝑊 ∈ Ring ∧ (𝑥 ∈ (Base‘𝑊) ∧ 𝑦 ∈ (Base‘𝑊) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
4738, 40, 42, 43, 46syl13anc 1374 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ (𝑥 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑦 ∈ (𝑆 ∩ (Base‘𝑊)) ∧ 𝑧 ∈ (Base‘𝑊))) → ((𝑥(.r𝑊)𝑦)(.r𝑊)𝑧) = (𝑥(.r𝑊)(𝑦(.r𝑊)𝑧)))
483, 13, 15ringlidm 20184 . . 3 ((𝑊 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑊)) → ((1r𝑊)(.r𝑊)𝑥) = 𝑥)
4918, 48sylan 580 . 2 ((𝑆 ∈ (SubRing‘𝑊) ∧ 𝑥 ∈ (Base‘𝑊)) → ((1r𝑊)(.r𝑊)𝑥) = 𝑥)
505, 6, 7, 8, 10, 12, 14, 16, 17, 24, 30, 37, 45, 47, 49islmodd 20778 1 (𝑆 ∈ (SubRing‘𝑊) → 𝐴 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3915  cfv 6513  (class class class)co 7389  Basecbs 17185  s cress 17206  +gcplusg 17226  .rcmulr 17227  Grpcgrp 18871  1rcur 20096  Ringcrg 20148  SubRingcsubrg 20484  LModclmod 20772  subringAlg csra 21084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-subg 19061  df-mgp 20056  df-ur 20097  df-ring 20150  df-subrg 20485  df-lmod 20774  df-sra 21086
This theorem is referenced by:  rlmlmod  21116  sraassab  21783  sraassaOLD  21785  evls1maplmhm  22270  sranlm  24578  sralvec  33587  lsssra  33590  fldextrspunlsplem  33674  fldextrspunlsp  33675  fldextrspunlem1  33676  fldextrspunfld  33677  algextdeglem2  33714
  Copyright terms: Public domain W3C validator