Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringsubdi | Structured version Visualization version GIF version |
Description: Ring multiplication distributes over subtraction. (subdi 11408 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringsubdi.b | ⊢ 𝐵 = (Base‘𝑅) |
ringsubdi.t | ⊢ · = (.r‘𝑅) |
ringsubdi.m | ⊢ − = (-g‘𝑅) |
ringsubdi.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringsubdi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringsubdi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringsubdi.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ringsubdi | ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringsubdi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringsubdi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ringsubdi.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ringgrp 19788 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
6 | ringsubdi.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | ringsubdi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
8 | eqid 2738 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
9 | 7, 8 | grpinvcl 18627 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝑅)‘𝑍) ∈ 𝐵) |
10 | 5, 6, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘𝑍) ∈ 𝐵) |
11 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
12 | ringsubdi.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
13 | 7, 11, 12 | ringdi 19805 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍)))) |
14 | 1, 2, 3, 10, 13 | syl13anc 1371 | . . 3 ⊢ (𝜑 → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍)))) |
15 | 7, 12, 8, 1, 2, 6 | ringmneg2 19836 | . . . 4 ⊢ (𝜑 → (𝑋 · ((invg‘𝑅)‘𝑍)) = ((invg‘𝑅)‘(𝑋 · 𝑍))) |
16 | 15 | oveq2d 7291 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
17 | 14, 16 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
18 | ringsubdi.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
19 | 7, 11, 8, 18 | grpsubval 18625 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) |
20 | 3, 6, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) |
21 | 20 | oveq2d 7291 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍)))) |
22 | 7, 12 | ringcl 19800 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
23 | 1, 2, 3, 22 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
24 | 7, 12 | ringcl 19800 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
25 | 1, 2, 6, 24 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
26 | 7, 11, 8, 18 | grpsubval 18625 | . . 3 ⊢ (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) − (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
27 | 23, 25, 26 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) − (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
28 | 17, 21, 27 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 .rcmulr 16963 Grpcgrp 18577 invgcminusg 18578 -gcsg 18579 Ringcrg 19783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mgp 19721 df-ur 19738 df-ring 19785 |
This theorem is referenced by: 2idlcpbl 20505 mdetuni0 21770 chfacfpmmulgsum2 22014 nrgdsdi 23829 nrginvrcnlem 23855 ply1divmo 25300 ornglmulle 31504 isdomn4 40172 |
Copyright terms: Public domain | W3C validator |