MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringsubdi Structured version   Visualization version   GIF version

Theorem ringsubdi 19836
Description: Ring multiplication distributes over subtraction. (subdi 11408 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringsubdi.b 𝐵 = (Base‘𝑅)
ringsubdi.t · = (.r𝑅)
ringsubdi.m = (-g𝑅)
ringsubdi.r (𝜑𝑅 ∈ Ring)
ringsubdi.x (𝜑𝑋𝐵)
ringsubdi.y (𝜑𝑌𝐵)
ringsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ringsubdi (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))

Proof of Theorem ringsubdi
StepHypRef Expression
1 ringsubdi.r . . . 4 (𝜑𝑅 ∈ Ring)
2 ringsubdi.x . . . 4 (𝜑𝑋𝐵)
3 ringsubdi.y . . . 4 (𝜑𝑌𝐵)
4 ringgrp 19786 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
51, 4syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
6 ringsubdi.z . . . . 5 (𝜑𝑍𝐵)
7 ringsubdi.b . . . . . 6 𝐵 = (Base‘𝑅)
8 eqid 2740 . . . . . 6 (invg𝑅) = (invg𝑅)
97, 8grpinvcl 18625 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑍𝐵) → ((invg𝑅)‘𝑍) ∈ 𝐵)
105, 6, 9syl2anc 584 . . . 4 (𝜑 → ((invg𝑅)‘𝑍) ∈ 𝐵)
11 eqid 2740 . . . . 5 (+g𝑅) = (+g𝑅)
12 ringsubdi.t . . . . 5 · = (.r𝑅)
137, 11, 12ringdi 19803 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
141, 2, 3, 10, 13syl13anc 1371 . . 3 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
157, 12, 8, 1, 2, 6ringmneg2 19834 . . . 4 (𝜑 → (𝑋 · ((invg𝑅)‘𝑍)) = ((invg𝑅)‘(𝑋 · 𝑍)))
1615oveq2d 7287 . . 3 (𝜑 → ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
1714, 16eqtrd 2780 . 2 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
18 ringsubdi.m . . . . 5 = (-g𝑅)
197, 11, 8, 18grpsubval 18623 . . . 4 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
203, 6, 19syl2anc 584 . . 3 (𝜑 → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
2120oveq2d 7287 . 2 (𝜑 → (𝑋 · (𝑌 𝑍)) = (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))))
227, 12ringcl 19798 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
231, 2, 3, 22syl3anc 1370 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
247, 12ringcl 19798 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
251, 2, 6, 24syl3anc 1370 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
267, 11, 8, 18grpsubval 18623 . . 3 (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2723, 25, 26syl2anc 584 . 2 (𝜑 → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2817, 21, 273eqtr4d 2790 1 (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  cfv 6432  (class class class)co 7271  Basecbs 16910  +gcplusg 16960  .rcmulr 16961  Grpcgrp 18575  invgcminusg 18576  -gcsg 18577  Ringcrg 19781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-plusg 16973  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-sbg 18580  df-mgp 19719  df-ur 19736  df-ring 19783
This theorem is referenced by:  2idlcpbl  20503  mdetuni0  21768  chfacfpmmulgsum2  22012  nrgdsdi  23827  nrginvrcnlem  23853  ply1divmo  25298  ornglmulle  31500  isdomn4  40169
  Copyright terms: Public domain W3C validator