MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringsubdi Structured version   Visualization version   GIF version

Theorem ringsubdi 19328
Description: Ring multiplication distributes over subtraction. (subdi 11051 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringsubdi.b 𝐵 = (Base‘𝑅)
ringsubdi.t · = (.r𝑅)
ringsubdi.m = (-g𝑅)
ringsubdi.r (𝜑𝑅 ∈ Ring)
ringsubdi.x (𝜑𝑋𝐵)
ringsubdi.y (𝜑𝑌𝐵)
ringsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ringsubdi (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))

Proof of Theorem ringsubdi
StepHypRef Expression
1 ringsubdi.r . . . 4 (𝜑𝑅 ∈ Ring)
2 ringsubdi.x . . . 4 (𝜑𝑋𝐵)
3 ringsubdi.y . . . 4 (𝜑𝑌𝐵)
4 ringgrp 19281 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
51, 4syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
6 ringsubdi.z . . . . 5 (𝜑𝑍𝐵)
7 ringsubdi.b . . . . . 6 𝐵 = (Base‘𝑅)
8 eqid 2820 . . . . . 6 (invg𝑅) = (invg𝑅)
97, 8grpinvcl 18130 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑍𝐵) → ((invg𝑅)‘𝑍) ∈ 𝐵)
105, 6, 9syl2anc 586 . . . 4 (𝜑 → ((invg𝑅)‘𝑍) ∈ 𝐵)
11 eqid 2820 . . . . 5 (+g𝑅) = (+g𝑅)
12 ringsubdi.t . . . . 5 · = (.r𝑅)
137, 11, 12ringdi 19295 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
141, 2, 3, 10, 13syl13anc 1368 . . 3 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
157, 12, 8, 1, 2, 6ringmneg2 19326 . . . 4 (𝜑 → (𝑋 · ((invg𝑅)‘𝑍)) = ((invg𝑅)‘(𝑋 · 𝑍)))
1615oveq2d 7149 . . 3 (𝜑 → ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
1714, 16eqtrd 2855 . 2 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
18 ringsubdi.m . . . . 5 = (-g𝑅)
197, 11, 8, 18grpsubval 18128 . . . 4 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
203, 6, 19syl2anc 586 . . 3 (𝜑 → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
2120oveq2d 7149 . 2 (𝜑 → (𝑋 · (𝑌 𝑍)) = (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))))
227, 12ringcl 19290 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
231, 2, 3, 22syl3anc 1367 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
247, 12ringcl 19290 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
251, 2, 6, 24syl3anc 1367 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
267, 11, 8, 18grpsubval 18128 . . 3 (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2723, 25, 26syl2anc 586 . 2 (𝜑 → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2817, 21, 273eqtr4d 2865 1 (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cfv 6331  (class class class)co 7133  Basecbs 16462  +gcplusg 16544  .rcmulr 16545  Grpcgrp 18082  invgcminusg 18083  -gcsg 18084  Ringcrg 19276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-plusg 16557  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-sbg 18087  df-mgp 19219  df-ur 19231  df-ring 19278
This theorem is referenced by:  2idlcpbl  19983  mdetuni0  21206  chfacfpmmulgsum2  21449  nrgdsdi  23250  nrginvrcnlem  23276  ply1divmo  24715  ornglmulle  30886
  Copyright terms: Public domain W3C validator