Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ringsubdi | Structured version Visualization version GIF version |
Description: Ring multiplication distributes over subtraction. (subdi 11338 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) |
Ref | Expression |
---|---|
ringsubdi.b | ⊢ 𝐵 = (Base‘𝑅) |
ringsubdi.t | ⊢ · = (.r‘𝑅) |
ringsubdi.m | ⊢ − = (-g‘𝑅) |
ringsubdi.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ringsubdi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
ringsubdi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
ringsubdi.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
Ref | Expression |
---|---|
ringsubdi | ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringsubdi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | ringsubdi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
3 | ringsubdi.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | ringgrp 19703 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
6 | ringsubdi.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
7 | ringsubdi.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
8 | eqid 2738 | . . . . . 6 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
9 | 7, 8 | grpinvcl 18542 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑍 ∈ 𝐵) → ((invg‘𝑅)‘𝑍) ∈ 𝐵) |
10 | 5, 6, 9 | syl2anc 583 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘𝑍) ∈ 𝐵) |
11 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
12 | ringsubdi.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
13 | 7, 11, 12 | ringdi 19720 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍)))) |
14 | 1, 2, 3, 10, 13 | syl13anc 1370 | . . 3 ⊢ (𝜑 → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍)))) |
15 | 7, 12, 8, 1, 2, 6 | ringmneg2 19751 | . . . 4 ⊢ (𝜑 → (𝑋 · ((invg‘𝑅)‘𝑍)) = ((invg‘𝑅)‘(𝑋 · 𝑍))) |
16 | 15 | oveq2d 7271 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
17 | 14, 16 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
18 | ringsubdi.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
19 | 7, 11, 8, 18 | grpsubval 18540 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) |
20 | 3, 6, 19 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) |
21 | 20 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍)))) |
22 | 7, 12 | ringcl 19715 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
23 | 1, 2, 3, 22 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
24 | 7, 12 | ringcl 19715 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
25 | 1, 2, 6, 24 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
26 | 7, 11, 8, 18 | grpsubval 18540 | . . 3 ⊢ (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) − (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
27 | 23, 25, 26 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) − (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
28 | 17, 21, 27 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Grpcgrp 18492 invgcminusg 18493 -gcsg 18494 Ringcrg 19698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mgp 19636 df-ur 19653 df-ring 19700 |
This theorem is referenced by: 2idlcpbl 20418 mdetuni0 21678 chfacfpmmulgsum2 21922 nrgdsdi 23735 nrginvrcnlem 23761 ply1divmo 25205 ornglmulle 31406 isdomn4 40100 |
Copyright terms: Public domain | W3C validator |