MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringsubdi Structured version   Visualization version   GIF version

Theorem ringsubdi 19349
Description: Ring multiplication distributes over subtraction. (subdi 11073 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
ringsubdi.b 𝐵 = (Base‘𝑅)
ringsubdi.t · = (.r𝑅)
ringsubdi.m = (-g𝑅)
ringsubdi.r (𝜑𝑅 ∈ Ring)
ringsubdi.x (𝜑𝑋𝐵)
ringsubdi.y (𝜑𝑌𝐵)
ringsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
ringsubdi (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))

Proof of Theorem ringsubdi
StepHypRef Expression
1 ringsubdi.r . . . 4 (𝜑𝑅 ∈ Ring)
2 ringsubdi.x . . . 4 (𝜑𝑋𝐵)
3 ringsubdi.y . . . 4 (𝜑𝑌𝐵)
4 ringgrp 19302 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
51, 4syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
6 ringsubdi.z . . . . 5 (𝜑𝑍𝐵)
7 ringsubdi.b . . . . . 6 𝐵 = (Base‘𝑅)
8 eqid 2821 . . . . . 6 (invg𝑅) = (invg𝑅)
97, 8grpinvcl 18151 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑍𝐵) → ((invg𝑅)‘𝑍) ∈ 𝐵)
105, 6, 9syl2anc 586 . . . 4 (𝜑 → ((invg𝑅)‘𝑍) ∈ 𝐵)
11 eqid 2821 . . . . 5 (+g𝑅) = (+g𝑅)
12 ringsubdi.t . . . . 5 · = (.r𝑅)
137, 11, 12ringdi 19316 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
141, 2, 3, 10, 13syl13anc 1368 . . 3 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
157, 12, 8, 1, 2, 6ringmneg2 19347 . . . 4 (𝜑 → (𝑋 · ((invg𝑅)‘𝑍)) = ((invg𝑅)‘(𝑋 · 𝑍)))
1615oveq2d 7172 . . 3 (𝜑 → ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
1714, 16eqtrd 2856 . 2 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
18 ringsubdi.m . . . . 5 = (-g𝑅)
197, 11, 8, 18grpsubval 18149 . . . 4 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
203, 6, 19syl2anc 586 . . 3 (𝜑 → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
2120oveq2d 7172 . 2 (𝜑 → (𝑋 · (𝑌 𝑍)) = (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))))
227, 12ringcl 19311 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
231, 2, 3, 22syl3anc 1367 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
247, 12ringcl 19311 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
251, 2, 6, 24syl3anc 1367 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
267, 11, 8, 18grpsubval 18149 . . 3 (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2723, 25, 26syl2anc 586 . 2 (𝜑 → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2817, 21, 273eqtr4d 2866 1 (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  Basecbs 16483  +gcplusg 16565  .rcmulr 16566  Grpcgrp 18103  invgcminusg 18104  -gcsg 18105  Ringcrg 19297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mgp 19240  df-ur 19252  df-ring 19299
This theorem is referenced by:  2idlcpbl  20007  mdetuni0  21230  chfacfpmmulgsum2  21473  nrgdsdi  23274  nrginvrcnlem  23300  ply1divmo  24729  ornglmulle  30878
  Copyright terms: Public domain W3C validator