![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringrz | Structured version Visualization version GIF version |
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.) |
Ref | Expression |
---|---|
ringz.b | ⊢ 𝐵 = (Base‘𝑅) |
ringz.t | ⊢ · = (.r‘𝑅) |
ringz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ringrz | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringrng 20176 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | |
2 | ringz.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | ringz.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | ringz.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | 2, 3, 4 | rngrz 20063 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
6 | 1, 5 | sylan 579 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6534 (class class class)co 7402 Basecbs 17145 .rcmulr 17199 0gc0g 17386 Rngcrng 20049 Ringcrg 20130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-nn 12211 df-2 12273 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-plusg 17211 df-0g 17388 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-cmn 19694 df-abl 19695 df-mgp 20032 df-rng 20050 df-ur 20079 df-ring 20132 |
This theorem is referenced by: ringrzd 20187 ringsrg 20188 ringinvnz1ne0 20191 ringinvnzdiv 20192 ringnegr 20194 gsummgp0 20209 gsumdixp 20210 dvdsr02 20266 cntzsubr 20500 isdrng2 20593 drngmul0or 20608 cntzsdrg 20645 isabvd 20655 lmodvs0 20734 rngqiprngimf1 21145 rrgeq0 21192 unitrrg 21195 domneq0 21199 isdomn4 21204 ocvlss 21535 frlmphl 21646 uvcresum 21658 psrridm 21836 mpllsslem 21871 mplsubrglem 21875 mplcoe1 21904 mplmon2 21934 evlslem4 21949 mhpmulcl 22002 mhpvscacl 22007 coe1tmmul2 22119 cply1mul 22139 mamurid 22268 matsc 22276 dmatmul 22323 dmatscmcl 22329 scmatscmide 22333 mulmarep1el 22398 mdetdiaglem 22424 mdetero 22436 mdetunilem8 22445 mdetunilem9 22446 mdetuni0 22447 maducoeval2 22466 madugsum 22469 smadiadetlem1a 22489 smadiadetglem2 22498 chpdmatlem2 22665 chfacfpmmul0 22688 cayhamlem4 22714 mdegvscale 25935 mdegmullem 25938 coe1mul3 25959 deg1mul3le 25976 ply1divex 25996 ply1rem 26023 fta1blem 26028 kerunit 32906 dvdsruasso 32962 mxidlirredi 33059 irngnzply1lem 33237 matunitlindflem1 36978 lfl0f 38433 lfl0sc 38446 lkrlss 38459 lcfrlem33 40940 hdmapinvlem3 41285 hdmapglem7b 41293 mnringmulrcld 43501 mgpsumz 47252 domnmsuppn0 47259 rmsuppss 47260 ply1mulgsumlem2 47281 lincresunit2 47372 |
Copyright terms: Public domain | W3C validator |