| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ringrz | Structured version Visualization version GIF version | ||
| Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.) |
| Ref | Expression |
|---|---|
| ringz.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringz.t | ⊢ · = (.r‘𝑅) |
| ringz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ringrz | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringrng 20245 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | |
| 2 | ringz.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | ringz.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 4 | ringz.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 5 | 2, 3, 4 | rngrz 20126 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| 6 | 1, 5 | sylan 580 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 0gc0g 17453 Rngcrng 20112 Ringcrg 20193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 |
| This theorem is referenced by: ringrzd 20256 ringsrg 20257 ringinvnz1ne0 20260 ringinvnzdiv 20261 ringnegr 20263 gsummgp0 20278 gsumdixp 20279 dvdsr02 20332 cntzsubr 20566 rrgeq0 20660 unitrrg 20663 domneq0 20668 isdomn4 20676 isdrng2 20703 drngmul0orOLD 20721 cntzsdrg 20762 isabvd 20772 lmodvs0 20853 rngqiprngimf1 21261 ocvlss 21632 frlmphl 21741 uvcresum 21753 psrridm 21923 mpllsslem 21960 mplsubrglem 21964 mplcoe1 21995 mplmon2 22019 evlslem4 22034 coe1tmmul2 22213 cply1mul 22234 mamurid 22380 matsc 22388 dmatmul 22435 dmatscmcl 22441 scmatscmide 22445 mulmarep1el 22510 mdetdiaglem 22536 mdetero 22548 mdetunilem8 22557 mdetunilem9 22558 mdetuni0 22559 maducoeval2 22578 madugsum 22581 smadiadetlem1a 22601 smadiadetglem2 22610 chpdmatlem2 22777 chfacfpmmul0 22800 cayhamlem4 22826 mdegvscale 26032 mdegmullem 26035 coe1mul3 26056 deg1mul3le 26074 ply1divex 26094 ply1rem 26123 fta1blem 26128 kerunit 33341 dvdsruasso 33400 mxidlirredi 33486 irngnzply1lem 33731 matunitlindflem1 37640 lfl0f 39087 lfl0sc 39100 lkrlss 39113 lcfrlem33 41594 hdmapinvlem3 41939 hdmapglem7b 41947 ringexp0nn 42147 mnringmulrcld 44252 mgpsumz 48337 domnmsuppn0 48344 rmsuppss 48345 ply1mulgsumlem2 48363 lincresunit2 48454 |
| Copyright terms: Public domain | W3C validator |