MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringrz Structured version   Visualization version   GIF version

Theorem ringrz 20197
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.)
Hypotheses
Ref Expression
ringz.b 𝐵 = (Base‘𝑅)
ringz.t · = (.r𝑅)
ringz.z 0 = (0g𝑅)
Assertion
Ref Expression
ringrz ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )

Proof of Theorem ringrz
StepHypRef Expression
1 ringrng 20188 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Rng)
2 ringz.b . . 3 𝐵 = (Base‘𝑅)
3 ringz.t . . 3 · = (.r𝑅)
4 ringz.z . . 3 0 = (0g𝑅)
52, 3, 4rngrz 20069 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
61, 5sylan 580 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  .rcmulr 17180  0gc0g 17361  Rngcrng 20055  Ringcrg 20136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138
This theorem is referenced by:  ringrzd  20199  ringsrg  20200  ringinvnz1ne0  20203  ringinvnzdiv  20204  ringnegr  20206  gsummgp0  20221  gsumdixp  20222  dvdsr02  20275  cntzsubr  20509  rrgeq0  20603  unitrrg  20606  domneq0  20611  isdomn4  20619  isdrng2  20646  drngmul0orOLD  20664  cntzsdrg  20705  isabvd  20715  lmodvs0  20817  rngqiprngimf1  21225  ocvlss  21597  frlmphl  21706  uvcresum  21718  psrridm  21888  mpllsslem  21925  mplsubrglem  21929  mplcoe1  21960  mplmon2  21984  evlslem4  21999  coe1tmmul2  22178  cply1mul  22199  mamurid  22345  matsc  22353  dmatmul  22400  dmatscmcl  22406  scmatscmide  22410  mulmarep1el  22475  mdetdiaglem  22501  mdetero  22513  mdetunilem8  22522  mdetunilem9  22523  mdetuni0  22524  maducoeval2  22543  madugsum  22546  smadiadetlem1a  22566  smadiadetglem2  22575  chpdmatlem2  22742  chfacfpmmul0  22765  cayhamlem4  22791  mdegvscale  25996  mdegmullem  25999  coe1mul3  26020  deg1mul3le  26038  ply1divex  26058  ply1rem  26087  fta1blem  26092  kerunit  33273  dvdsruasso  33332  mxidlirredi  33418  irngnzply1lem  33661  matunitlindflem1  37595  lfl0f  39047  lfl0sc  39060  lkrlss  39073  lcfrlem33  41554  hdmapinvlem3  41899  hdmapglem7b  41907  ringexp0nn  42107  mnringmulrcld  44201  mgpsumz  48347  domnmsuppn0  48354  rmsuppss  48355  ply1mulgsumlem2  48373  lincresunit2  48464
  Copyright terms: Public domain W3C validator