![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringrz | Structured version Visualization version GIF version |
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.) |
Ref | Expression |
---|---|
ringz.b | ⊢ 𝐵 = (Base‘𝑅) |
ringz.t | ⊢ · = (.r‘𝑅) |
ringz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ringrz | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringrng 20308 | . 2 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Rng) | |
2 | ringz.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | ringz.t | . . 3 ⊢ · = (.r‘𝑅) | |
4 | ringz.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
5 | 2, 3, 4 | rngrz 20193 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
6 | 1, 5 | sylan 579 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · 0 ) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 Rngcrng 20179 Ringcrg 20260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 |
This theorem is referenced by: ringrzd 20319 ringsrg 20320 ringinvnz1ne0 20323 ringinvnzdiv 20324 ringnegr 20326 gsummgp0 20341 gsumdixp 20342 dvdsr02 20398 cntzsubr 20634 rrgeq0 20722 unitrrg 20725 domneq0 20730 isdomn4 20738 isdrng2 20765 drngmul0orOLD 20783 cntzsdrg 20825 isabvd 20835 lmodvs0 20916 rngqiprngimf1 21333 ocvlss 21713 frlmphl 21824 uvcresum 21836 psrridm 22006 mpllsslem 22043 mplsubrglem 22047 mplcoe1 22078 mplmon2 22108 evlslem4 22123 coe1tmmul2 22300 cply1mul 22321 mamurid 22469 matsc 22477 dmatmul 22524 dmatscmcl 22530 scmatscmide 22534 mulmarep1el 22599 mdetdiaglem 22625 mdetero 22637 mdetunilem8 22646 mdetunilem9 22647 mdetuni0 22648 maducoeval2 22667 madugsum 22670 smadiadetlem1a 22690 smadiadetglem2 22699 chpdmatlem2 22866 chfacfpmmul0 22889 cayhamlem4 22915 mdegvscale 26134 mdegmullem 26137 coe1mul3 26158 deg1mul3le 26176 ply1divex 26196 ply1rem 26225 fta1blem 26230 kerunit 33314 dvdsruasso 33378 mxidlirredi 33464 irngnzply1lem 33690 matunitlindflem1 37576 lfl0f 39025 lfl0sc 39038 lkrlss 39051 lcfrlem33 41532 hdmapinvlem3 41877 hdmapglem7b 41885 ringexp0nn 42091 mnringmulrcld 44197 mgpsumz 48087 domnmsuppn0 48094 rmsuppss 48095 ply1mulgsumlem2 48116 lincresunit2 48207 |
Copyright terms: Public domain | W3C validator |