MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringrz Structured version   Visualization version   GIF version

Theorem ringrz 20210
Description: The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (Proof shortened by AV, 30-Mar-2025.)
Hypotheses
Ref Expression
ringz.b 𝐵 = (Base‘𝑅)
ringz.t · = (.r𝑅)
ringz.z 0 = (0g𝑅)
Assertion
Ref Expression
ringrz ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )

Proof of Theorem ringrz
StepHypRef Expression
1 ringrng 20201 . 2 (𝑅 ∈ Ring → 𝑅 ∈ Rng)
2 ringz.b . . 3 𝐵 = (Base‘𝑅)
3 ringz.t . . 3 · = (.r𝑅)
4 ringz.z . . 3 0 = (0g𝑅)
52, 3, 4rngrz 20082 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
61, 5sylan 580 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17117  .rcmulr 17159  0gc0g 17340  Rngcrng 20068  Ringcrg 20149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-0g 17342  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151
This theorem is referenced by:  ringrzd  20212  ringsrg  20213  ringinvnz1ne0  20216  ringinvnzdiv  20217  ringnegr  20219  gsummgp0  20234  gsumdixp  20235  dvdsr02  20288  cntzsubr  20519  rrgeq0  20613  unitrrg  20616  domneq0  20621  isdomn4  20629  isdrng2  20656  drngmul0orOLD  20674  cntzsdrg  20715  isabvd  20725  lmodvs0  20827  rngqiprngimf1  21235  ocvlss  21607  frlmphl  21716  uvcresum  21728  psrridm  21898  mpllsslem  21935  mplsubrglem  21939  mplcoe1  21970  mplmon2  21994  evlslem4  22009  coe1tmmul2  22188  cply1mul  22209  mamurid  22355  matsc  22363  dmatmul  22410  dmatscmcl  22416  scmatscmide  22420  mulmarep1el  22485  mdetdiaglem  22511  mdetero  22523  mdetunilem8  22532  mdetunilem9  22533  mdetuni0  22534  maducoeval2  22553  madugsum  22556  smadiadetlem1a  22576  smadiadetglem2  22585  chpdmatlem2  22752  chfacfpmmul0  22775  cayhamlem4  22801  mdegvscale  26005  mdegmullem  26008  coe1mul3  26029  deg1mul3le  26047  ply1divex  26067  ply1rem  26096  fta1blem  26101  kerunit  33285  dvdsruasso  33345  mxidlirredi  33431  irngnzply1lem  33698  matunitlindflem1  37655  lfl0f  39107  lfl0sc  39120  lkrlss  39133  lcfrlem33  41613  hdmapinvlem3  41958  hdmapglem7b  41966  ringexp0nn  42166  mnringmulrcld  44260  mgpsumz  48392  domnmsuppn0  48399  rmsuppss  48400  ply1mulgsumlem2  48418  lincresunit2  48509
  Copyright terms: Public domain W3C validator