Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi2 Structured version   Visualization version   GIF version

Theorem lflvsdi2 39035
Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v 𝑉 = (Base‘𝑊)
lfldi.r 𝑅 = (Scalar‘𝑊)
lfldi.k 𝐾 = (Base‘𝑅)
lfldi.p + = (+g𝑅)
lfldi.t · = (.r𝑅)
lfldi.f 𝐹 = (LFnl‘𝑊)
lfldi.w (𝜑𝑊 ∈ LMod)
lfldi.x (𝜑𝑋𝐾)
lfldi2.y (𝜑𝑌𝐾)
lfldi2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflvsdi2 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))

Proof of Theorem lflvsdi2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfldi.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6934 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lfldi.w . . 3 (𝜑𝑊 ∈ LMod)
5 lfldi2.g . . 3 (𝜑𝐺𝐹)
6 lfldi.r . . . 4 𝑅 = (Scalar‘𝑊)
7 lfldi.k . . . 4 𝐾 = (Base‘𝑅)
8 lfldi.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 39019 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
104, 5, 9syl2anc 583 . 2 (𝜑𝐺:𝑉𝐾)
11 lfldi.x . . 3 (𝜑𝑋𝐾)
12 fconst6g 6810 . . 3 (𝑋𝐾 → (𝑉 × {𝑋}):𝑉𝐾)
1311, 12syl 17 . 2 (𝜑 → (𝑉 × {𝑋}):𝑉𝐾)
14 lfldi2.y . . 3 (𝜑𝑌𝐾)
15 fconst6g 6810 . . 3 (𝑌𝐾 → (𝑉 × {𝑌}):𝑉𝐾)
1614, 15syl 17 . 2 (𝜑 → (𝑉 × {𝑌}):𝑉𝐾)
176lmodring 20888 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
184, 17syl 17 . . 3 (𝜑𝑅 ∈ Ring)
19 lfldi.p . . . 4 + = (+g𝑅)
20 lfldi.t . . . 4 · = (.r𝑅)
217, 19, 20ringdi 20287 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
2218, 21sylan 579 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
233, 10, 13, 16, 22caofdi 7754 1 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  Scalarcsca 17314  Ringcrg 20260  LModclmod 20880  LFnlclfn 39013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-map 8886  df-ring 20262  df-lmod 20882  df-lfl 39014
This theorem is referenced by:  lflvsdi2a  39036
  Copyright terms: Public domain W3C validator