|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lflvsdi2 | Structured version Visualization version GIF version | ||
| Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.) | 
| Ref | Expression | 
|---|---|
| lfldi.v | ⊢ 𝑉 = (Base‘𝑊) | 
| lfldi.r | ⊢ 𝑅 = (Scalar‘𝑊) | 
| lfldi.k | ⊢ 𝐾 = (Base‘𝑅) | 
| lfldi.p | ⊢ + = (+g‘𝑅) | 
| lfldi.t | ⊢ · = (.r‘𝑅) | 
| lfldi.f | ⊢ 𝐹 = (LFnl‘𝑊) | 
| lfldi.w | ⊢ (𝜑 → 𝑊 ∈ LMod) | 
| lfldi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) | 
| lfldi2.y | ⊢ (𝜑 → 𝑌 ∈ 𝐾) | 
| lfldi2.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) | 
| Ref | Expression | 
|---|---|
| lflvsdi2 | ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lfldi.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6920 | . . 3 ⊢ 𝑉 ∈ V | 
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) | 
| 4 | lfldi.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lfldi2.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 6 | lfldi.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 7 | lfldi.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 8 | lfldi.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 6, 7, 1, 8 | lflf 39064 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶𝐾) | 
| 10 | 4, 5, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) | 
| 11 | lfldi.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
| 12 | fconst6g 6797 | . . 3 ⊢ (𝑋 ∈ 𝐾 → (𝑉 × {𝑋}):𝑉⟶𝐾) | |
| 13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑉 × {𝑋}):𝑉⟶𝐾) | 
| 14 | lfldi2.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐾) | |
| 15 | fconst6g 6797 | . . 3 ⊢ (𝑌 ∈ 𝐾 → (𝑉 × {𝑌}):𝑉⟶𝐾) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → (𝑉 × {𝑌}):𝑉⟶𝐾) | 
| 17 | 6 | lmodring 20866 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) | 
| 18 | 4, 17 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| 19 | lfldi.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 20 | lfldi.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 21 | 7, 19, 20 | ringdi 20258 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | 
| 22 | 18, 21 | sylan 580 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) | 
| 23 | 3, 10, 13, 16, 22 | caofdi 7739 | 1 ⊢ (𝜑 → (𝐺 ∘f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺 ∘f · (𝑉 × {𝑋})) ∘f + (𝐺 ∘f · (𝑉 × {𝑌})))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 {csn 4626 × cxp 5683 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 ∘f cof 7695 Basecbs 17247 +gcplusg 17297 .rcmulr 17298 Scalarcsca 17300 Ringcrg 20230 LModclmod 20858 LFnlclfn 39058 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-map 8868 df-ring 20232 df-lmod 20860 df-lfl 39059 | 
| This theorem is referenced by: lflvsdi2a 39081 | 
| Copyright terms: Public domain | W3C validator |