Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi2 Structured version   Visualization version   GIF version

Theorem lflvsdi2 37020
Description: Reverse distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v 𝑉 = (Base‘𝑊)
lfldi.r 𝑅 = (Scalar‘𝑊)
lfldi.k 𝐾 = (Base‘𝑅)
lfldi.p + = (+g𝑅)
lfldi.t · = (.r𝑅)
lfldi.f 𝐹 = (LFnl‘𝑊)
lfldi.w (𝜑𝑊 ∈ LMod)
lfldi.x (𝜑𝑋𝐾)
lfldi2.y (𝜑𝑌𝐾)
lfldi2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflvsdi2 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))

Proof of Theorem lflvsdi2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfldi.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6770 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lfldi.w . . 3 (𝜑𝑊 ∈ LMod)
5 lfldi2.g . . 3 (𝜑𝐺𝐹)
6 lfldi.r . . . 4 𝑅 = (Scalar‘𝑊)
7 lfldi.k . . . 4 𝐾 = (Base‘𝑅)
8 lfldi.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 37004 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
104, 5, 9syl2anc 583 . 2 (𝜑𝐺:𝑉𝐾)
11 lfldi.x . . 3 (𝜑𝑋𝐾)
12 fconst6g 6647 . . 3 (𝑋𝐾 → (𝑉 × {𝑋}):𝑉𝐾)
1311, 12syl 17 . 2 (𝜑 → (𝑉 × {𝑋}):𝑉𝐾)
14 lfldi2.y . . 3 (𝜑𝑌𝐾)
15 fconst6g 6647 . . 3 (𝑌𝐾 → (𝑉 × {𝑌}):𝑉𝐾)
1614, 15syl 17 . 2 (𝜑 → (𝑉 × {𝑌}):𝑉𝐾)
176lmodring 20046 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
184, 17syl 17 . . 3 (𝜑𝑅 ∈ Ring)
19 lfldi.p . . . 4 + = (+g𝑅)
20 lfldi.t . . . 4 · = (.r𝑅)
217, 19, 20ringdi 19720 . . 3 ((𝑅 ∈ Ring ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
2218, 21sylan 579 . 2 ((𝜑 ∧ (𝑥𝐾𝑦𝐾𝑧𝐾)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))
233, 10, 13, 16, 22caofdi 7550 1 (𝜑 → (𝐺f · ((𝑉 × {𝑋}) ∘f + (𝑉 × {𝑌}))) = ((𝐺f · (𝑉 × {𝑋})) ∘f + (𝐺f · (𝑉 × {𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  Basecbs 16840  +gcplusg 16888  .rcmulr 16889  Scalarcsca 16891  Ringcrg 19698  LModclmod 20038  LFnlclfn 36998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-map 8575  df-ring 19700  df-lmod 20040  df-lfl 36999
This theorem is referenced by:  lflvsdi2a  37021
  Copyright terms: Public domain W3C validator