| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota5 | Structured version Visualization version GIF version | ||
| Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota5.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| riota5.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) |
| Ref | Expression |
|---|---|
| riota5 | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvd 2892 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 2 | riota5.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 3 | riota5.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) | |
| 4 | 1, 2, 3 | riota5f 7354 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ℩crio 7325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-reu 3352 df-v 3446 df-sbc 3751 df-un 3916 df-ss 3928 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6452 df-riota 7326 |
| This theorem is referenced by: f1ocnvfv3 7364 ttrcltr 9647 sqrt0 15184 lubid 18302 lubun 18457 odval2 19466 adjvalval 31917 xdivpnfrp 32904 xrsinvgval 32993 dfgcd3 37306 poimirlem6 37614 poimirlem7 37615 lub0N 39176 glb0N 39180 trlval2 40151 cdlemefrs32fva 40388 cdleme32fva 40425 cdlemg1a 40558 unxpwdom3 43078 |
| Copyright terms: Public domain | W3C validator |