| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota5 | Structured version Visualization version GIF version | ||
| Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota5.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| riota5.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) |
| Ref | Expression |
|---|---|
| riota5 | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvd 2898 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 2 | riota5.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 3 | riota5.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) | |
| 4 | 1, 2, 3 | riota5f 7399 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ℩crio 7370 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-reu 3365 df-v 3466 df-sbc 3773 df-un 3938 df-ss 3950 df-sn 4609 df-pr 4611 df-uni 4890 df-iota 6495 df-riota 7371 |
| This theorem is referenced by: f1ocnvfv3 7409 ttrcltr 9739 sqrt0 15263 lubid 18377 lubun 18530 odval2 19538 adjvalval 31899 xdivpnfrp 32858 xrsinvgval 32952 dfgcd3 37262 poimirlem6 37570 poimirlem7 37571 lub0N 39127 glb0N 39131 trlval2 40102 cdlemefrs32fva 40339 cdleme32fva 40376 cdlemg1a 40509 unxpwdom3 43048 |
| Copyright terms: Public domain | W3C validator |