MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota5 Structured version   Visualization version   GIF version

Theorem riota5 7332
Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.)
Hypotheses
Ref Expression
riota5.1 (𝜑𝐵𝐴)
riota5.2 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
Assertion
Ref Expression
riota5 (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem riota5
StepHypRef Expression
1 nfcvd 2895 . 2 (𝜑𝑥𝐵)
2 riota5.1 . 2 (𝜑𝐵𝐴)
3 riota5.2 . 2 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
41, 2, 3riota5f 7331 1 (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  crio 7302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-reu 3347  df-v 3438  df-sbc 3737  df-un 3902  df-ss 3914  df-sn 4574  df-pr 4576  df-uni 4857  df-iota 6437  df-riota 7303
This theorem is referenced by:  f1ocnvfv3  7341  ttrcltr  9606  sqrt0  15148  lubid  18266  lubun  18421  odval2  19463  adjvalval  31917  xdivpnfrp  32913  xrsinvgval  32989  dfgcd3  37368  poimirlem6  37665  poimirlem7  37666  lub0N  39287  glb0N  39291  trlval2  40261  cdlemefrs32fva  40498  cdleme32fva  40535  cdlemg1a  40668  unxpwdom3  43187
  Copyright terms: Public domain W3C validator