Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riota5 | Structured version Visualization version GIF version |
Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
riota5.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
riota5.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) |
Ref | Expression |
---|---|
riota5 | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2908 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
2 | riota5.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
3 | riota5.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) | |
4 | 1, 2, 3 | riota5f 7253 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ℩crio 7223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-reu 3071 df-v 3431 df-sbc 3716 df-un 3891 df-in 3893 df-ss 3903 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6384 df-riota 7224 |
This theorem is referenced by: f1ocnvfv3 7263 ttrcltr 9461 sqrt0 14963 lubid 18090 lubun 18243 odval2 19169 adjvalval 30307 xdivpnfrp 31215 xrsinvgval 31294 dfgcd3 35503 poimirlem6 35791 poimirlem7 35792 lub0N 37211 glb0N 37215 trlval2 38185 cdlemefrs32fva 38422 cdleme32fva 38459 cdlemg1a 38592 unxpwdom3 40928 |
Copyright terms: Public domain | W3C validator |