| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota5 | Structured version Visualization version GIF version | ||
| Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota5.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| riota5.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) |
| Ref | Expression |
|---|---|
| riota5 | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvd 2892 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 2 | riota5.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 3 | riota5.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) | |
| 4 | 1, 2, 3 | riota5f 7355 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ℩crio 7326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-reu 3352 df-v 3446 df-sbc 3751 df-un 3916 df-ss 3928 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6453 df-riota 7327 |
| This theorem is referenced by: f1ocnvfv3 7365 ttrcltr 9648 sqrt0 15185 lubid 18303 lubun 18458 odval2 19467 adjvalval 31918 xdivpnfrp 32905 xrsinvgval 32994 dfgcd3 37307 poimirlem6 37615 poimirlem7 37616 lub0N 39177 glb0N 39181 trlval2 40152 cdlemefrs32fva 40389 cdleme32fva 40426 cdlemg1a 40559 unxpwdom3 43079 |
| Copyright terms: Public domain | W3C validator |