Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > riota5 | Structured version Visualization version GIF version |
Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
Ref | Expression |
---|---|
riota5.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
riota5.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) |
Ref | Expression |
---|---|
riota5 | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2909 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
2 | riota5.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
3 | riota5.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) | |
4 | 1, 2, 3 | riota5f 7254 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ℩crio 7224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-reu 3072 df-v 3432 df-sbc 3720 df-un 3896 df-in 3898 df-ss 3908 df-sn 4567 df-pr 4569 df-uni 4845 df-iota 6388 df-riota 7225 |
This theorem is referenced by: f1ocnvfv3 7264 ttrcltr 9435 sqrt0 14934 lubid 18061 lubun 18214 odval2 19140 adjvalval 30278 xdivpnfrp 31186 xrsinvgval 31265 dfgcd3 35474 poimirlem6 35762 poimirlem7 35763 lub0N 37182 glb0N 37186 trlval2 38156 cdlemefrs32fva 38393 cdleme32fva 38430 cdlemg1a 38563 unxpwdom3 40900 |
Copyright terms: Public domain | W3C validator |