| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riota5 | Structured version Visualization version GIF version | ||
| Description: A method for computing restricted iota. (Contributed by NM, 20-Oct-2011.) (Revised by Mario Carneiro, 6-Dec-2016.) |
| Ref | Expression |
|---|---|
| riota5.1 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| riota5.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) |
| Ref | Expression |
|---|---|
| riota5 | ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcvd 2894 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 2 | riota5.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 3 | riota5.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝑥 = 𝐵)) | |
| 4 | 1, 2, 3 | riota5f 7379 | 1 ⊢ (𝜑 → (℩𝑥 ∈ 𝐴 𝜓) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ℩crio 7350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ral 3047 df-rex 3056 df-reu 3358 df-v 3457 df-sbc 3762 df-un 3927 df-ss 3939 df-sn 4598 df-pr 4600 df-uni 4880 df-iota 6472 df-riota 7351 |
| This theorem is referenced by: f1ocnvfv3 7389 ttrcltr 9687 sqrt0 15217 lubid 18327 lubun 18480 odval2 19487 adjvalval 31873 xdivpnfrp 32861 xrsinvgval 32954 dfgcd3 37309 poimirlem6 37617 poimirlem7 37618 lub0N 39174 glb0N 39178 trlval2 40149 cdlemefrs32fva 40386 cdleme32fva 40423 cdlemg1a 40556 unxpwdom3 43056 |
| Copyright terms: Public domain | W3C validator |