Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs32fva Structured version   Visualization version   GIF version

Theorem cdlemefrs32fva 38414
Description: Part of proof of Lemma E in [Crawley] p. 113. Value of 𝐹 at an atom not under 𝑊. TODO: FIX COMMENT. TODO: consolidate uses of lhpmat 38044 here and elsewhere, and presence/absence of 𝑠 (𝑃 𝑄) term. Also, why can proof be shortened with cdleme29cl 38391? What is difference from cdlemefs27cl 38427? (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs27.b 𝐵 = (Base‘𝐾)
cdlemefrs27.l = (le‘𝐾)
cdlemefrs27.j = (join‘𝐾)
cdlemefrs27.m = (meet‘𝐾)
cdlemefrs27.a 𝐴 = (Atoms‘𝐾)
cdlemefrs27.h 𝐻 = (LHyp‘𝐾)
cdlemefrs27.eq (𝑠 = 𝑅 → (𝜑𝜓))
cdlemefrs27.nb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
cdlemefrs27.rnb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑠𝑁𝐵)
cdleme29frs.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
Assertion
Ref Expression
cdlemefrs32fva ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑥𝑂 = 𝑅 / 𝑠𝑁)
Distinct variable groups:   𝑧,𝑠,𝐴   𝐻,𝑠   ,𝑠   𝐾,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑊,𝑠   𝜓,𝑠   𝑧,𝐴   𝑧,𝐵   𝑧,𝐻   𝑧,𝐾   𝑧,   𝑧,𝑁   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑊   𝜓,𝑧   𝐵,𝑠   𝑧,   ,𝑠,𝑧   𝜑,𝑧   𝑥,𝑧,𝐴   𝑥,𝐵   𝑥,   𝑥,   𝑥,   𝑥,𝑁   𝑥,𝑠,𝑅   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑥,𝑠)   𝜓(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝐻(𝑥)   𝐾(𝑥)   𝑁(𝑠)   𝑂(𝑥,𝑧,𝑠)

Proof of Theorem cdlemefrs32fva
StepHypRef Expression
1 simp2rl 1241 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅𝐴)
2 cdlemefrs27.b . . . 4 𝐵 = (Base‘𝐾)
3 cdlemefrs27.a . . . 4 𝐴 = (Atoms‘𝐾)
42, 3atbase 37303 . . 3 (𝑅𝐴𝑅𝐵)
5 cdleme29frs.o . . . 4 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
6 eqid 2738 . . . 4 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
75, 6cdleme31so 38393 . . 3 (𝑅𝐵𝑅 / 𝑥𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
81, 4, 73syl 18 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑥𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
9 ssidd 3944 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝐵𝐵)
10 simpll 764 . . . . . . . 8 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → ¬ 𝑠 𝑊)
11 simpr 485 . . . . . . . 8 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → (𝑠 (𝑅 𝑊)) = 𝑅)
1210, 11jca 512 . . . . . . 7 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅))
1312imim1i 63 . . . . . 6 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
1413ralimi 3087 . . . . 5 (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → ∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
1514rgenw 3076 . . . 4 𝑧𝐵 (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → ∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
1615a1i 11 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ∀𝑧𝐵 (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → ∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
17 cdlemefrs27.l . . . . 5 = (le‘𝐾)
18 cdlemefrs27.j . . . . 5 = (join‘𝐾)
19 cdlemefrs27.m . . . . 5 = (meet‘𝐾)
20 cdlemefrs27.h . . . . 5 𝐻 = (LHyp‘𝐾)
21 cdlemefrs27.eq . . . . 5 (𝑠 = 𝑅 → (𝜑𝜓))
22 cdlemefrs27.nb . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
23 cdlemefrs27.rnb . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑠𝑁𝐵)
242, 17, 18, 19, 3, 20, 21, 22, 23cdlemefrs29bpre1 38411 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ∃𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
25 simpl11 1247 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simpl2r 1226 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
27 simpl3 1192 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → 𝜓)
28 simpr 485 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → 𝑠𝐴)
292, 17, 18, 19, 3, 20, 21cdlemefrs29pre00 38409 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
3025, 26, 27, 28, 29syl31anc 1372 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
3130imbi1d 342 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → ((((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
3231ralbidva 3111 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
3332rexbidv 3226 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∃𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∃𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
3424, 33mpbid 231 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ∃𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
352, 17, 18, 19, 3, 20, 21, 22, 23cdlemefrs29cpre1 38412 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ∃!𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
36 riotass2 7263 . . 3 (((𝐵𝐵 ∧ ∀𝑧𝐵 (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → ∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))) ∧ (∃𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ∧ ∃!𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))) → (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = (𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
379, 16, 34, 35, 36syl22anc 836 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = (𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
382, 17, 18, 19, 3, 20, 21, 22cdlemefrs29bpre0 38410 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
3938adantr 481 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑧𝐵) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
4023, 39riota5 7262 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = 𝑅 / 𝑠𝑁)
418, 37, 403eqtrd 2782 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑥𝑂 = 𝑅 / 𝑠𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  ∃!wreu 3066  csb 3832  wss 3887   class class class wbr 5074  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Atomscatm 37277  HLchlt 37364  LHypclh 37998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-lhyp 38002
This theorem is referenced by:  cdlemefrs32fva1  38415  cdlemefr32fvaN  38423  cdlemefs32fvaN  38436
  Copyright terms: Public domain W3C validator