Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefrs32fva Structured version   Visualization version   GIF version

Theorem cdlemefrs32fva 37405
Description: Part of proof of Lemma E in [Crawley] p. 113. Value of 𝐹 at an atom not under 𝑊. TODO: FIX COMMENT. TODO: consolidate uses of lhpmat 37035 here and elsewhere, and presence/absence of 𝑠 (𝑃 𝑄) term. Also, why can proof be shortened with cdleme29cl 37382? What is difference from cdlemefs27cl 37418? (Contributed by NM, 29-Mar-2013.)
Hypotheses
Ref Expression
cdlemefrs27.b 𝐵 = (Base‘𝐾)
cdlemefrs27.l = (le‘𝐾)
cdlemefrs27.j = (join‘𝐾)
cdlemefrs27.m = (meet‘𝐾)
cdlemefrs27.a 𝐴 = (Atoms‘𝐾)
cdlemefrs27.h 𝐻 = (LHyp‘𝐾)
cdlemefrs27.eq (𝑠 = 𝑅 → (𝜑𝜓))
cdlemefrs27.nb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
cdlemefrs27.rnb ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑠𝑁𝐵)
cdleme29frs.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
Assertion
Ref Expression
cdlemefrs32fva ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑥𝑂 = 𝑅 / 𝑠𝑁)
Distinct variable groups:   𝑧,𝑠,𝐴   𝐻,𝑠   ,𝑠   𝐾,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑊,𝑠   𝜓,𝑠   𝑧,𝐴   𝑧,𝐵   𝑧,𝐻   𝑧,𝐾   𝑧,   𝑧,𝑁   𝑧,𝑃   𝑧,𝑄   𝑧,𝑅   𝑧,𝑊   𝜓,𝑧   𝐵,𝑠   𝑧,   ,𝑠,𝑧   𝜑,𝑧   𝑥,𝑧,𝐴   𝑥,𝐵   𝑥,   𝑥,   𝑥,   𝑥,𝑁   𝑥,𝑠,𝑅   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑥,𝑠)   𝜓(𝑥)   𝑃(𝑥)   𝑄(𝑥)   𝐻(𝑥)   𝐾(𝑥)   𝑁(𝑠)   𝑂(𝑥,𝑧,𝑠)

Proof of Theorem cdlemefrs32fva
StepHypRef Expression
1 simp2rl 1236 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅𝐴)
2 cdlemefrs27.b . . . 4 𝐵 = (Base‘𝐾)
3 cdlemefrs27.a . . . 4 𝐴 = (Atoms‘𝐾)
42, 3atbase 36294 . . 3 (𝑅𝐴𝑅𝐵)
5 cdleme29frs.o . . . 4 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
6 eqid 2825 . . . 4 (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
75, 6cdleme31so 37384 . . 3 (𝑅𝐵𝑅 / 𝑥𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
81, 4, 73syl 18 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑥𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
9 ssidd 3993 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝐵𝐵)
10 simpll 763 . . . . . . . 8 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → ¬ 𝑠 𝑊)
11 simpr 485 . . . . . . . 8 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → (𝑠 (𝑅 𝑊)) = 𝑅)
1210, 11jca 512 . . . . . . 7 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅))
1312imim1i 63 . . . . . 6 (((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
1413ralimi 3164 . . . . 5 (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → ∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
1514rgenw 3154 . . . 4 𝑧𝐵 (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → ∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
1615a1i 11 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ∀𝑧𝐵 (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → ∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
17 cdlemefrs27.l . . . . 5 = (le‘𝐾)
18 cdlemefrs27.j . . . . 5 = (join‘𝐾)
19 cdlemefrs27.m . . . . 5 = (meet‘𝐾)
20 cdlemefrs27.h . . . . 5 𝐻 = (LHyp‘𝐾)
21 cdlemefrs27.eq . . . . 5 (𝑠 = 𝑅 → (𝜑𝜓))
22 cdlemefrs27.nb . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ 𝑃𝑄 ∧ (𝑠𝐴 ∧ (¬ 𝑠 𝑊𝜑))) → 𝑁𝐵)
23 cdlemefrs27.rnb . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑠𝑁𝐵)
242, 17, 18, 19, 3, 20, 21, 22, 23cdlemefrs29bpre1 37402 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ∃𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
25 simpl11 1242 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → (𝐾 ∈ HL ∧ 𝑊𝐻))
26 simpl2r 1221 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
27 simpl3 1187 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → 𝜓)
28 simpr 485 . . . . . . . 8 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → 𝑠𝐴)
292, 17, 18, 19, 3, 20, 21cdlemefrs29pre00 37400 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ 𝜓) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
3025, 26, 27, 28, 29syl31anc 1367 . . . . . . 7 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) ↔ (¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅)))
3130imbi1d 343 . . . . . 6 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑠𝐴) → ((((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
3231ralbidva 3200 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
3332rexbidv 3301 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∃𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ ∃𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
3424, 33mpbid 233 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ∃𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
352, 17, 18, 19, 3, 20, 21, 22, 23cdlemefrs29cpre1 37403 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → ∃!𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))
36 riotass2 7139 . . 3 (((𝐵𝐵 ∧ ∀𝑧𝐵 (∀𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) → ∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))) ∧ (∃𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ∧ ∃!𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))))) → (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = (𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
379, 16, 34, 35, 36syl22anc 836 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = (𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))))
382, 17, 18, 19, 3, 20, 21, 22cdlemefrs29bpre0 37401 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
3938adantr 481 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) ∧ 𝑧𝐵) → (∀𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊))) ↔ 𝑧 = 𝑅 / 𝑠𝑁))
4023, 39riota5 7138 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → (𝑧𝐵𝑠𝐴 (((¬ 𝑠 𝑊𝜑) ∧ (𝑠 (𝑅 𝑊)) = 𝑅) → 𝑧 = (𝑁 (𝑅 𝑊)))) = 𝑅 / 𝑠𝑁)
418, 37, 403eqtrd 2864 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝜓) → 𝑅 / 𝑥𝑂 = 𝑅 / 𝑠𝑁)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020  wral 3142  wrex 3143  ∃!wreu 3144  csb 3886  wss 3939   class class class wbr 5062  cfv 6351  crio 7108  (class class class)co 7151  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Atomscatm 36268  HLchlt 36355  LHypclh 36989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36181  df-ol 36183  df-oml 36184  df-covers 36271  df-ats 36272  df-atl 36303  df-cvlat 36327  df-hlat 36356  df-lhyp 36993
This theorem is referenced by:  cdlemefrs32fva1  37406  cdlemefr32fvaN  37414  cdlemefs32fvaN  37427
  Copyright terms: Public domain W3C validator