Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unxpwdom3 Structured version   Visualization version   GIF version

Theorem unxpwdom3 43057
Description: Weaker version of unxpwdom 9518 where a function is required only to be cancellative, not an injection. 𝐷 and 𝐵 are to be thought of as "large" "horizonal" sets, the others as "small". Because the operator is row-wise injective, but the whole row cannot inject into 𝐴, each row must hit an element of 𝐵; by column injectivity, each row can be identified in at least one way by the 𝐵 element that it hits and the column in which it is hit. (Contributed by Stefan O'Rear, 8-Jul-2015.) MOVABLE
Hypotheses
Ref Expression
unxpwdom3.av (𝜑𝐴𝑉)
unxpwdom3.bv (𝜑𝐵𝑊)
unxpwdom3.dv (𝜑𝐷𝑋)
unxpwdom3.ov ((𝜑𝑎𝐶𝑏𝐷) → (𝑎 + 𝑏) ∈ (𝐴𝐵))
unxpwdom3.lc (((𝜑𝑎𝐶) ∧ (𝑏𝐷𝑐𝐷)) → ((𝑎 + 𝑏) = (𝑎 + 𝑐) ↔ 𝑏 = 𝑐))
unxpwdom3.rc (((𝜑𝑑𝐷) ∧ (𝑎𝐶𝑐𝐶)) → ((𝑐 + 𝑑) = (𝑎 + 𝑑) ↔ 𝑐 = 𝑎))
unxpwdom3.ni (𝜑 → ¬ 𝐷𝐴)
Assertion
Ref Expression
unxpwdom3 (𝜑𝐶* (𝐷 × 𝐵))
Distinct variable groups:   𝑎,𝑏,𝑐,𝑑,𝐵   𝐶,𝑎,𝑏,𝑐,𝑑   𝐷,𝑎,𝑏,𝑐,𝑑   + ,𝑎,𝑏,𝑐,𝑑   𝜑,𝑎,𝑏,𝑐,𝑑   𝐴,𝑏,𝑐
Allowed substitution hints:   𝐴(𝑎,𝑑)   𝑉(𝑎,𝑏,𝑐,𝑑)   𝑊(𝑎,𝑏,𝑐,𝑑)   𝑋(𝑎,𝑏,𝑐,𝑑)

Proof of Theorem unxpwdom3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unxpwdom3.dv . . 3 (𝜑𝐷𝑋)
2 unxpwdom3.bv . . 3 (𝜑𝐵𝑊)
31, 2xpexd 7707 . 2 (𝜑 → (𝐷 × 𝐵) ∈ V)
4 simprr 772 . . . . 5 (((𝜑𝑎𝐶) ∧ (𝑑𝐷 ∧ (𝑎 + 𝑑) ∈ 𝐵)) → (𝑎 + 𝑑) ∈ 𝐵)
5 simplr 768 . . . . . . 7 (((𝜑𝑎𝐶) ∧ (𝑑𝐷 ∧ (𝑎 + 𝑑) ∈ 𝐵)) → 𝑎𝐶)
6 unxpwdom3.rc . . . . . . . . . 10 (((𝜑𝑑𝐷) ∧ (𝑎𝐶𝑐𝐶)) → ((𝑐 + 𝑑) = (𝑎 + 𝑑) ↔ 𝑐 = 𝑎))
76an4s 660 . . . . . . . . 9 (((𝜑𝑎𝐶) ∧ (𝑑𝐷𝑐𝐶)) → ((𝑐 + 𝑑) = (𝑎 + 𝑑) ↔ 𝑐 = 𝑎))
87anassrs 467 . . . . . . . 8 ((((𝜑𝑎𝐶) ∧ 𝑑𝐷) ∧ 𝑐𝐶) → ((𝑐 + 𝑑) = (𝑎 + 𝑑) ↔ 𝑐 = 𝑎))
98adantlrr 721 . . . . . . 7 ((((𝜑𝑎𝐶) ∧ (𝑑𝐷 ∧ (𝑎 + 𝑑) ∈ 𝐵)) ∧ 𝑐𝐶) → ((𝑐 + 𝑑) = (𝑎 + 𝑑) ↔ 𝑐 = 𝑎))
105, 9riota5 7355 . . . . . 6 (((𝜑𝑎𝐶) ∧ (𝑑𝐷 ∧ (𝑎 + 𝑑) ∈ 𝐵)) → (𝑐𝐶 (𝑐 + 𝑑) = (𝑎 + 𝑑)) = 𝑎)
1110eqcomd 2735 . . . . 5 (((𝜑𝑎𝐶) ∧ (𝑑𝐷 ∧ (𝑎 + 𝑑) ∈ 𝐵)) → 𝑎 = (𝑐𝐶 (𝑐 + 𝑑) = (𝑎 + 𝑑)))
12 eqeq2 2741 . . . . . . 7 (𝑦 = (𝑎 + 𝑑) → ((𝑐 + 𝑑) = 𝑦 ↔ (𝑐 + 𝑑) = (𝑎 + 𝑑)))
1312riotabidv 7328 . . . . . 6 (𝑦 = (𝑎 + 𝑑) → (𝑐𝐶 (𝑐 + 𝑑) = 𝑦) = (𝑐𝐶 (𝑐 + 𝑑) = (𝑎 + 𝑑)))
1413rspceeqv 3608 . . . . 5 (((𝑎 + 𝑑) ∈ 𝐵𝑎 = (𝑐𝐶 (𝑐 + 𝑑) = (𝑎 + 𝑑))) → ∃𝑦𝐵 𝑎 = (𝑐𝐶 (𝑐 + 𝑑) = 𝑦))
154, 11, 14syl2anc 584 . . . 4 (((𝜑𝑎𝐶) ∧ (𝑑𝐷 ∧ (𝑎 + 𝑑) ∈ 𝐵)) → ∃𝑦𝐵 𝑎 = (𝑐𝐶 (𝑐 + 𝑑) = 𝑦))
16 unxpwdom3.ni . . . . . . 7 (𝜑 → ¬ 𝐷𝐴)
1716adantr 480 . . . . . 6 ((𝜑𝑎𝐶) → ¬ 𝐷𝐴)
18 unxpwdom3.av . . . . . . . 8 (𝜑𝐴𝑉)
1918ad2antrr 726 . . . . . . 7 (((𝜑𝑎𝐶) ∧ ∀𝑑𝐷 ¬ (𝑎 + 𝑑) ∈ 𝐵) → 𝐴𝑉)
20 oveq2 7377 . . . . . . . . . . . . . 14 (𝑑 = 𝑏 → (𝑎 + 𝑑) = (𝑎 + 𝑏))
2120eleq1d 2813 . . . . . . . . . . . . 13 (𝑑 = 𝑏 → ((𝑎 + 𝑑) ∈ 𝐵 ↔ (𝑎 + 𝑏) ∈ 𝐵))
2221notbid 318 . . . . . . . . . . . 12 (𝑑 = 𝑏 → (¬ (𝑎 + 𝑑) ∈ 𝐵 ↔ ¬ (𝑎 + 𝑏) ∈ 𝐵))
2322rspcv 3581 . . . . . . . . . . 11 (𝑏𝐷 → (∀𝑑𝐷 ¬ (𝑎 + 𝑑) ∈ 𝐵 → ¬ (𝑎 + 𝑏) ∈ 𝐵))
2423adantl 481 . . . . . . . . . 10 (((𝜑𝑎𝐶) ∧ 𝑏𝐷) → (∀𝑑𝐷 ¬ (𝑎 + 𝑑) ∈ 𝐵 → ¬ (𝑎 + 𝑏) ∈ 𝐵))
25 unxpwdom3.ov . . . . . . . . . . . . . 14 ((𝜑𝑎𝐶𝑏𝐷) → (𝑎 + 𝑏) ∈ (𝐴𝐵))
26253expa 1118 . . . . . . . . . . . . 13 (((𝜑𝑎𝐶) ∧ 𝑏𝐷) → (𝑎 + 𝑏) ∈ (𝐴𝐵))
27 elun 4112 . . . . . . . . . . . . 13 ((𝑎 + 𝑏) ∈ (𝐴𝐵) ↔ ((𝑎 + 𝑏) ∈ 𝐴 ∨ (𝑎 + 𝑏) ∈ 𝐵))
2826, 27sylib 218 . . . . . . . . . . . 12 (((𝜑𝑎𝐶) ∧ 𝑏𝐷) → ((𝑎 + 𝑏) ∈ 𝐴 ∨ (𝑎 + 𝑏) ∈ 𝐵))
2928orcomd 871 . . . . . . . . . . 11 (((𝜑𝑎𝐶) ∧ 𝑏𝐷) → ((𝑎 + 𝑏) ∈ 𝐵 ∨ (𝑎 + 𝑏) ∈ 𝐴))
3029ord 864 . . . . . . . . . 10 (((𝜑𝑎𝐶) ∧ 𝑏𝐷) → (¬ (𝑎 + 𝑏) ∈ 𝐵 → (𝑎 + 𝑏) ∈ 𝐴))
3124, 30syld 47 . . . . . . . . 9 (((𝜑𝑎𝐶) ∧ 𝑏𝐷) → (∀𝑑𝐷 ¬ (𝑎 + 𝑑) ∈ 𝐵 → (𝑎 + 𝑏) ∈ 𝐴))
3231impancom 451 . . . . . . . 8 (((𝜑𝑎𝐶) ∧ ∀𝑑𝐷 ¬ (𝑎 + 𝑑) ∈ 𝐵) → (𝑏𝐷 → (𝑎 + 𝑏) ∈ 𝐴))
33 unxpwdom3.lc . . . . . . . . . 10 (((𝜑𝑎𝐶) ∧ (𝑏𝐷𝑐𝐷)) → ((𝑎 + 𝑏) = (𝑎 + 𝑐) ↔ 𝑏 = 𝑐))
3433ex 412 . . . . . . . . 9 ((𝜑𝑎𝐶) → ((𝑏𝐷𝑐𝐷) → ((𝑎 + 𝑏) = (𝑎 + 𝑐) ↔ 𝑏 = 𝑐)))
3534adantr 480 . . . . . . . 8 (((𝜑𝑎𝐶) ∧ ∀𝑑𝐷 ¬ (𝑎 + 𝑑) ∈ 𝐵) → ((𝑏𝐷𝑐𝐷) → ((𝑎 + 𝑏) = (𝑎 + 𝑐) ↔ 𝑏 = 𝑐)))
3632, 35dom2d 8941 . . . . . . 7 (((𝜑𝑎𝐶) ∧ ∀𝑑𝐷 ¬ (𝑎 + 𝑑) ∈ 𝐵) → (𝐴𝑉𝐷𝐴))
3719, 36mpd 15 . . . . . 6 (((𝜑𝑎𝐶) ∧ ∀𝑑𝐷 ¬ (𝑎 + 𝑑) ∈ 𝐵) → 𝐷𝐴)
3817, 37mtand 815 . . . . 5 ((𝜑𝑎𝐶) → ¬ ∀𝑑𝐷 ¬ (𝑎 + 𝑑) ∈ 𝐵)
39 dfrex2 3056 . . . . 5 (∃𝑑𝐷 (𝑎 + 𝑑) ∈ 𝐵 ↔ ¬ ∀𝑑𝐷 ¬ (𝑎 + 𝑑) ∈ 𝐵)
4038, 39sylibr 234 . . . 4 ((𝜑𝑎𝐶) → ∃𝑑𝐷 (𝑎 + 𝑑) ∈ 𝐵)
4115, 40reximddv 3149 . . 3 ((𝜑𝑎𝐶) → ∃𝑑𝐷𝑦𝐵 𝑎 = (𝑐𝐶 (𝑐 + 𝑑) = 𝑦))
42 vex 3448 . . . . . . . . 9 𝑑 ∈ V
43 vex 3448 . . . . . . . . 9 𝑦 ∈ V
4442, 43op1std 7957 . . . . . . . 8 (𝑥 = ⟨𝑑, 𝑦⟩ → (1st𝑥) = 𝑑)
4544oveq2d 7385 . . . . . . 7 (𝑥 = ⟨𝑑, 𝑦⟩ → (𝑐 + (1st𝑥)) = (𝑐 + 𝑑))
4642, 43op2ndd 7958 . . . . . . 7 (𝑥 = ⟨𝑑, 𝑦⟩ → (2nd𝑥) = 𝑦)
4745, 46eqeq12d 2745 . . . . . 6 (𝑥 = ⟨𝑑, 𝑦⟩ → ((𝑐 + (1st𝑥)) = (2nd𝑥) ↔ (𝑐 + 𝑑) = 𝑦))
4847riotabidv 7328 . . . . 5 (𝑥 = ⟨𝑑, 𝑦⟩ → (𝑐𝐶 (𝑐 + (1st𝑥)) = (2nd𝑥)) = (𝑐𝐶 (𝑐 + 𝑑) = 𝑦))
4948eqeq2d 2740 . . . 4 (𝑥 = ⟨𝑑, 𝑦⟩ → (𝑎 = (𝑐𝐶 (𝑐 + (1st𝑥)) = (2nd𝑥)) ↔ 𝑎 = (𝑐𝐶 (𝑐 + 𝑑) = 𝑦)))
5049rexxp 5796 . . 3 (∃𝑥 ∈ (𝐷 × 𝐵)𝑎 = (𝑐𝐶 (𝑐 + (1st𝑥)) = (2nd𝑥)) ↔ ∃𝑑𝐷𝑦𝐵 𝑎 = (𝑐𝐶 (𝑐 + 𝑑) = 𝑦))
5141, 50sylibr 234 . 2 ((𝜑𝑎𝐶) → ∃𝑥 ∈ (𝐷 × 𝐵)𝑎 = (𝑐𝐶 (𝑐 + (1st𝑥)) = (2nd𝑥)))
523, 51wdomd 9510 1 (𝜑𝐶* (𝐷 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  cun 3909  cop 4591   class class class wbr 5102   × cxp 5629  cfv 6499  crio 7325  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  cdom 8893  * cwdom 9493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-1st 7947  df-2nd 7948  df-en 8896  df-dom 8897  df-sdom 8898  df-wdom 9494
This theorem is referenced by:  isnumbasgrplem2  43066
  Copyright terms: Public domain W3C validator