MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odval2 Structured version   Visualization version   GIF version

Theorem odval2 18178
Description: A non-conditional definition of the group order. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
odval2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = (𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Distinct variable groups:   𝑦, 0   𝑥,𝑦,𝐴   𝑥,𝑂,𝑦   𝑦, ·   𝑥,𝐺,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   · (𝑥)   0 (𝑥)

Proof of Theorem odval2
StepHypRef Expression
1 odcl.1 . . . . 5 𝑋 = (Base‘𝐺)
2 odcl.2 . . . . 5 𝑂 = (od‘𝐺)
31, 2odcl 18163 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
43adantl 467 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) ∈ ℕ0)
5 odid.3 . . . . . 6 · = (.g𝐺)
6 odid.4 . . . . . 6 0 = (0g𝐺)
71, 2, 5, 6odeq 18177 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥 ∈ ℕ0) → (𝑥 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑥𝑦 ↔ (𝑦 · 𝐴) = 0 )))
873expa 1111 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℕ0) → (𝑥 = (𝑂𝐴) ↔ ∀𝑦 ∈ ℕ0 (𝑥𝑦 ↔ (𝑦 · 𝐴) = 0 )))
98bicomd 213 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑥𝑦 ↔ (𝑦 · 𝐴) = 0 ) ↔ 𝑥 = (𝑂𝐴)))
104, 9riota5 6781 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥𝑦 ↔ (𝑦 · 𝐴) = 0 )) = (𝑂𝐴))
1110eqcomd 2777 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝑂𝐴) = (𝑥 ∈ ℕ0𝑦 ∈ ℕ0 (𝑥𝑦 ↔ (𝑦 · 𝐴) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wral 3061   class class class wbr 4787  cfv 6032  crio 6754  (class class class)co 6794  0cn0 11495  cdvds 15190  Basecbs 16065  0gc0g 16309  Grpcgrp 17631  .gcmg 17749  odcod 18152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7097  ax-inf2 8703  ax-cnex 10195  ax-resscn 10196  ax-1cn 10197  ax-icn 10198  ax-addcl 10199  ax-addrcl 10200  ax-mulcl 10201  ax-mulrcl 10202  ax-mulcom 10203  ax-addass 10204  ax-mulass 10205  ax-distr 10206  ax-i2m1 10207  ax-1ne0 10208  ax-1rid 10209  ax-rnegex 10210  ax-rrecex 10211  ax-cnre 10212  ax-pre-lttri 10213  ax-pre-lttrn 10214  ax-pre-ltadd 10215  ax-pre-mulgt0 10216  ax-pre-sup 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-pss 3740  df-nul 4065  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5824  df-ord 5870  df-on 5871  df-lim 5872  df-suc 5873  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-f1 6037  df-fo 6038  df-f1o 6039  df-fv 6040  df-riota 6755  df-ov 6797  df-oprab 6798  df-mpt2 6799  df-om 7214  df-1st 7316  df-2nd 7317  df-wrecs 7560  df-recs 7622  df-rdg 7660  df-er 7897  df-en 8111  df-dom 8112  df-sdom 8113  df-sup 8505  df-inf 8506  df-pnf 10279  df-mnf 10280  df-xr 10281  df-ltxr 10282  df-le 10283  df-sub 10471  df-neg 10472  df-div 10888  df-nn 11224  df-2 11282  df-3 11283  df-n0 11496  df-z 11581  df-uz 11890  df-rp 12037  df-fz 12535  df-fl 12802  df-mod 12878  df-seq 13010  df-exp 13069  df-cj 14048  df-re 14049  df-im 14050  df-sqrt 14184  df-abs 14185  df-dvds 15191  df-0g 16311  df-mgm 17451  df-sgrp 17493  df-mnd 17504  df-grp 17634  df-minusg 17635  df-sbg 17636  df-mulg 17750  df-od 18156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator