![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xdivpnfrp | Structured version Visualization version GIF version |
Description: Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
Ref | Expression |
---|---|
xdivpnfrp | ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprene0 13074 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) | |
2 | pnfxr 11344 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
3 | 1, 2 | jctil 519 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (+∞ ∈ ℝ* ∧ (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))) |
4 | 3anass 1095 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ↔ (+∞ ∈ ℝ* ∧ (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))) | |
5 | 3, 4 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) |
6 | xdivval 32883 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (+∞ /𝑒 𝐴) = (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞)) |
8 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → +∞ ∈ ℝ*) |
9 | xlemul2 13353 | . . . . . . 7 ⊢ ((+∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ+) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) | |
10 | 2, 9 | mp3an1 1448 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ+) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) |
11 | 10 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) |
12 | rpxr 13066 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | |
13 | rpgt0 13069 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
14 | xmulpnf1 13336 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | |
15 | 12, 13, 14 | syl2anc 583 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ·e +∞) = +∞) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e +∞) = +∞) |
17 | 16 | breq1d 5176 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → ((𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥) ↔ +∞ ≤ (𝐴 ·e 𝑥))) |
18 | 11, 17 | bitr2d 280 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ (𝐴 ·e 𝑥) ↔ +∞ ≤ 𝑥)) |
19 | xmulcl 13335 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e 𝑥) ∈ ℝ*) | |
20 | 12, 19 | sylan 579 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e 𝑥) ∈ ℝ*) |
21 | xgepnf 13227 | . . . . 5 ⊢ ((𝐴 ·e 𝑥) ∈ ℝ* → (+∞ ≤ (𝐴 ·e 𝑥) ↔ (𝐴 ·e 𝑥) = +∞)) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ (𝐴 ·e 𝑥) ↔ (𝐴 ·e 𝑥) = +∞)) |
23 | xgepnf 13227 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥 ↔ 𝑥 = +∞)) | |
24 | 23 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥 ↔ 𝑥 = +∞)) |
25 | 18, 22, 24 | 3bitr3d 309 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → ((𝐴 ·e 𝑥) = +∞ ↔ 𝑥 = +∞)) |
26 | 8, 25 | riota5 7434 | . 2 ⊢ (𝐴 ∈ ℝ+ → (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞) = +∞) |
27 | 7, 26 | eqtrd 2780 | 1 ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 class class class wbr 5166 ℩crio 7403 (class class class)co 7448 ℝcr 11183 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 ℝ+crp 13057 ·e cxmu 13174 /𝑒 cxdiv 32881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-rp 13058 df-xneg 13175 df-xmul 13177 df-xdiv 32882 |
This theorem is referenced by: xrpxdivcld 32899 |
Copyright terms: Public domain | W3C validator |