| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xdivpnfrp | Structured version Visualization version GIF version | ||
| Description: Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
| Ref | Expression |
|---|---|
| xdivpnfrp | ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rprene0 12969 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) | |
| 2 | pnfxr 11228 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
| 3 | 1, 2 | jctil 519 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (+∞ ∈ ℝ* ∧ (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))) |
| 4 | 3anass 1094 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ↔ (+∞ ∈ ℝ* ∧ (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))) | |
| 5 | 3, 4 | sylibr 234 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) |
| 6 | xdivval 32839 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (+∞ /𝑒 𝐴) = (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞)) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞)) |
| 8 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → +∞ ∈ ℝ*) |
| 9 | xlemul2 13251 | . . . . . . 7 ⊢ ((+∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ+) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) | |
| 10 | 2, 9 | mp3an1 1450 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ+) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) |
| 11 | 10 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) |
| 12 | rpxr 12961 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | |
| 13 | rpgt0 12964 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
| 14 | xmulpnf1 13234 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | |
| 15 | 12, 13, 14 | syl2anc 584 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ·e +∞) = +∞) |
| 16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e +∞) = +∞) |
| 17 | 16 | breq1d 5117 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → ((𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥) ↔ +∞ ≤ (𝐴 ·e 𝑥))) |
| 18 | 11, 17 | bitr2d 280 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ (𝐴 ·e 𝑥) ↔ +∞ ≤ 𝑥)) |
| 19 | xmulcl 13233 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e 𝑥) ∈ ℝ*) | |
| 20 | 12, 19 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e 𝑥) ∈ ℝ*) |
| 21 | xgepnf 13125 | . . . . 5 ⊢ ((𝐴 ·e 𝑥) ∈ ℝ* → (+∞ ≤ (𝐴 ·e 𝑥) ↔ (𝐴 ·e 𝑥) = +∞)) | |
| 22 | 20, 21 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ (𝐴 ·e 𝑥) ↔ (𝐴 ·e 𝑥) = +∞)) |
| 23 | xgepnf 13125 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥 ↔ 𝑥 = +∞)) | |
| 24 | 23 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥 ↔ 𝑥 = +∞)) |
| 25 | 18, 22, 24 | 3bitr3d 309 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → ((𝐴 ·e 𝑥) = +∞ ↔ 𝑥 = +∞)) |
| 26 | 8, 25 | riota5 7373 | . 2 ⊢ (𝐴 ∈ ℝ+ → (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞) = +∞) |
| 27 | 7, 26 | eqtrd 2764 | 1 ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ℩crio 7343 (class class class)co 7387 ℝcr 11067 0cc0 11068 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 ℝ+crp 12951 ·e cxmu 13071 /𝑒 cxdiv 32837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-rp 12952 df-xneg 13072 df-xmul 13074 df-xdiv 32838 |
| This theorem is referenced by: xrpxdivcld 32855 |
| Copyright terms: Public domain | W3C validator |