Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xdivpnfrp | Structured version Visualization version GIF version |
Description: Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
Ref | Expression |
---|---|
xdivpnfrp | ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprene0 12676 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) | |
2 | pnfxr 10960 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
3 | 1, 2 | jctil 519 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (+∞ ∈ ℝ* ∧ (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))) |
4 | 3anass 1093 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ↔ (+∞ ∈ ℝ* ∧ (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))) | |
5 | 3, 4 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) |
6 | xdivval 31095 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (+∞ /𝑒 𝐴) = (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞)) |
8 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → +∞ ∈ ℝ*) |
9 | xlemul2 12954 | . . . . . . 7 ⊢ ((+∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ+) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) | |
10 | 2, 9 | mp3an1 1446 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ+) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) |
11 | 10 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) |
12 | rpxr 12668 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | |
13 | rpgt0 12671 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
14 | xmulpnf1 12937 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | |
15 | 12, 13, 14 | syl2anc 583 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ·e +∞) = +∞) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e +∞) = +∞) |
17 | 16 | breq1d 5080 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → ((𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥) ↔ +∞ ≤ (𝐴 ·e 𝑥))) |
18 | 11, 17 | bitr2d 279 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ (𝐴 ·e 𝑥) ↔ +∞ ≤ 𝑥)) |
19 | xmulcl 12936 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e 𝑥) ∈ ℝ*) | |
20 | 12, 19 | sylan 579 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e 𝑥) ∈ ℝ*) |
21 | xgepnf 12828 | . . . . 5 ⊢ ((𝐴 ·e 𝑥) ∈ ℝ* → (+∞ ≤ (𝐴 ·e 𝑥) ↔ (𝐴 ·e 𝑥) = +∞)) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ (𝐴 ·e 𝑥) ↔ (𝐴 ·e 𝑥) = +∞)) |
23 | xgepnf 12828 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥 ↔ 𝑥 = +∞)) | |
24 | 23 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥 ↔ 𝑥 = +∞)) |
25 | 18, 22, 24 | 3bitr3d 308 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → ((𝐴 ·e 𝑥) = +∞ ↔ 𝑥 = +∞)) |
26 | 8, 25 | riota5 7242 | . 2 ⊢ (𝐴 ∈ ℝ+ → (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞) = +∞) |
27 | 7, 26 | eqtrd 2778 | 1 ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 ℩crio 7211 (class class class)co 7255 ℝcr 10801 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 ℝ+crp 12659 ·e cxmu 12776 /𝑒 cxdiv 31093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-rp 12660 df-xneg 12777 df-xmul 12779 df-xdiv 31094 |
This theorem is referenced by: xrpxdivcld 31111 |
Copyright terms: Public domain | W3C validator |