![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xdivpnfrp | Structured version Visualization version GIF version |
Description: Plus infinity divided by a positive real number is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.) |
Ref | Expression |
---|---|
xdivpnfrp | ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rprene0 12998 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) | |
2 | pnfxr 11275 | . . . . 5 ⊢ +∞ ∈ ℝ* | |
3 | 1, 2 | jctil 519 | . . . 4 ⊢ (𝐴 ∈ ℝ+ → (+∞ ∈ ℝ* ∧ (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))) |
4 | 3anass 1094 | . . . 4 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) ↔ (+∞ ∈ ℝ* ∧ (𝐴 ∈ ℝ ∧ 𝐴 ≠ 0))) | |
5 | 3, 4 | sylibr 233 | . . 3 ⊢ (𝐴 ∈ ℝ+ → (+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0)) |
6 | xdivval 32520 | . . 3 ⊢ ((+∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (+∞ /𝑒 𝐴) = (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞)) | |
7 | 5, 6 | syl 17 | . 2 ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞)) |
8 | 2 | a1i 11 | . . 3 ⊢ (𝐴 ∈ ℝ+ → +∞ ∈ ℝ*) |
9 | xlemul2 13277 | . . . . . . 7 ⊢ ((+∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ+) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) | |
10 | 2, 9 | mp3an1 1447 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ+) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) |
11 | 10 | ancoms 458 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥 ↔ (𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥))) |
12 | rpxr 12990 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → 𝐴 ∈ ℝ*) | |
13 | rpgt0 12993 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ+ → 0 < 𝐴) | |
14 | xmulpnf1 13260 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞) | |
15 | 12, 13, 14 | syl2anc 583 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ+ → (𝐴 ·e +∞) = +∞) |
16 | 15 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e +∞) = +∞) |
17 | 16 | breq1d 5158 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → ((𝐴 ·e +∞) ≤ (𝐴 ·e 𝑥) ↔ +∞ ≤ (𝐴 ·e 𝑥))) |
18 | 11, 17 | bitr2d 280 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ (𝐴 ·e 𝑥) ↔ +∞ ≤ 𝑥)) |
19 | xmulcl 13259 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e 𝑥) ∈ ℝ*) | |
20 | 12, 19 | sylan 579 | . . . . 5 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (𝐴 ·e 𝑥) ∈ ℝ*) |
21 | xgepnf 13151 | . . . . 5 ⊢ ((𝐴 ·e 𝑥) ∈ ℝ* → (+∞ ≤ (𝐴 ·e 𝑥) ↔ (𝐴 ·e 𝑥) = +∞)) | |
22 | 20, 21 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ (𝐴 ·e 𝑥) ↔ (𝐴 ·e 𝑥) = +∞)) |
23 | xgepnf 13151 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (+∞ ≤ 𝑥 ↔ 𝑥 = +∞)) | |
24 | 23 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → (+∞ ≤ 𝑥 ↔ 𝑥 = +∞)) |
25 | 18, 22, 24 | 3bitr3d 309 | . . 3 ⊢ ((𝐴 ∈ ℝ+ ∧ 𝑥 ∈ ℝ*) → ((𝐴 ·e 𝑥) = +∞ ↔ 𝑥 = +∞)) |
26 | 8, 25 | riota5 7398 | . 2 ⊢ (𝐴 ∈ ℝ+ → (℩𝑥 ∈ ℝ* (𝐴 ·e 𝑥) = +∞) = +∞) |
27 | 7, 26 | eqtrd 2771 | 1 ⊢ (𝐴 ∈ ℝ+ → (+∞ /𝑒 𝐴) = +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 ℩crio 7367 (class class class)co 7412 ℝcr 11115 0cc0 11116 +∞cpnf 11252 ℝ*cxr 11254 < clt 11255 ≤ cle 11256 ℝ+crp 12981 ·e cxmu 13098 /𝑒 cxdiv 32518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-rp 12982 df-xneg 13099 df-xmul 13101 df-xdiv 32519 |
This theorem is referenced by: xrpxdivcld 32536 |
Copyright terms: Public domain | W3C validator |