MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt0 Structured version   Visualization version   GIF version

Theorem sqrt0 15186
Description: The square root of zero is zero. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrt0 (√‘0) = 0

Proof of Theorem sqrt0
StepHypRef Expression
1 0cn 11204 . . 3 0 ∈ ℂ
2 sqrtval 15182 . . 3 (0 ∈ ℂ → (√‘0) = (𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
31, 2ax-mp 5 . 2 (√‘0) = (𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
4 id 22 . . . 4 (0 ∈ ℂ → 0 ∈ ℂ)
5 sqeq0 14083 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥↑2) = 0 ↔ 𝑥 = 0))
65biimpa 476 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑥↑2) = 0) → 𝑥 = 0)
763ad2antr1 1185 . . . . . . 7 ((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → 𝑥 = 0)
87ex 412 . . . . . 6 (𝑥 ∈ ℂ → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → 𝑥 = 0))
9 sq0i 14155 . . . . . . 7 (𝑥 = 0 → (𝑥↑2) = 0)
10 0le0 12311 . . . . . . . 8 0 ≤ 0
11 fveq2 6882 . . . . . . . . 9 (𝑥 = 0 → (ℜ‘𝑥) = (ℜ‘0))
12 re0 15097 . . . . . . . . 9 (ℜ‘0) = 0
1311, 12eqtrdi 2780 . . . . . . . 8 (𝑥 = 0 → (ℜ‘𝑥) = 0)
1410, 13breqtrrid 5177 . . . . . . 7 (𝑥 = 0 → 0 ≤ (ℜ‘𝑥))
15 0re 11214 . . . . . . . . 9 0 ∈ ℝ
16 eleq1 2813 . . . . . . . . 9 (𝑥 = 0 → (𝑥 ∈ ℝ ↔ 0 ∈ ℝ))
1715, 16mpbiri 258 . . . . . . . 8 (𝑥 = 0 → 𝑥 ∈ ℝ)
18 rennim 15184 . . . . . . . 8 (𝑥 ∈ ℝ → (i · 𝑥) ∉ ℝ+)
1917, 18syl 17 . . . . . . 7 (𝑥 = 0 → (i · 𝑥) ∉ ℝ+)
209, 14, 193jca 1125 . . . . . 6 (𝑥 = 0 → ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
218, 20impbid1 224 . . . . 5 (𝑥 ∈ ℂ → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ 𝑥 = 0))
2221adantl 481 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ 𝑥 = 0))
234, 22riota5 7388 . . 3 (0 ∈ ℂ → (𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 0)
241, 23ax-mp 5 . 2 (𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 0
253, 24eqtri 2752 1 (√‘0) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 205  w3a 1084   = wceq 1533  wcel 2098  wnel 3038   class class class wbr 5139  cfv 6534  crio 7357  (class class class)co 7402  cc 11105  cr 11106  0cc0 11107  ici 11109   · cmul 11112  cle 11247  2c2 12265  +crp 12972  cexp 14025  cre 15042  csqrt 15178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-n0 12471  df-z 12557  df-uz 12821  df-rp 12973  df-seq 13965  df-exp 14026  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180
This theorem is referenced by:  sqrt00  15208  abs0  15230  cnsqrt00  15337  cphsqrtcl2  25038  cxpsqrt  26556  cxpsqrtth  26583  loglesqrt  26612  asin1  26745  normgt0  30852  norm0  30853  ftc1anclem3  37057  areacirc  37075  rrncmslem  37194  sqrtcval  42906
  Copyright terms: Public domain W3C validator