![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrt0 | Structured version Visualization version GIF version |
Description: The square root of zero is zero. (Contributed by Mario Carneiro, 9-Jul-2013.) |
Ref | Expression |
---|---|
sqrt0 | ⊢ (√‘0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11250 | . . 3 ⊢ 0 ∈ ℂ | |
2 | sqrtval 15272 | . . 3 ⊢ (0 ∈ ℂ → (√‘0) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (√‘0) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) |
4 | id 22 | . . . 4 ⊢ (0 ∈ ℂ → 0 ∈ ℂ) | |
5 | sqeq0 14156 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → ((𝑥↑2) = 0 ↔ 𝑥 = 0)) | |
6 | 5 | biimpa 476 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ (𝑥↑2) = 0) → 𝑥 = 0) |
7 | 6 | 3ad2antr1 1187 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → 𝑥 = 0) |
8 | 7 | ex 412 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → 𝑥 = 0)) |
9 | sq0i 14228 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥↑2) = 0) | |
10 | 0le0 12364 | . . . . . . . 8 ⊢ 0 ≤ 0 | |
11 | fveq2 6906 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (ℜ‘𝑥) = (ℜ‘0)) | |
12 | re0 15187 | . . . . . . . . 9 ⊢ (ℜ‘0) = 0 | |
13 | 11, 12 | eqtrdi 2790 | . . . . . . . 8 ⊢ (𝑥 = 0 → (ℜ‘𝑥) = 0) |
14 | 10, 13 | breqtrrid 5185 | . . . . . . 7 ⊢ (𝑥 = 0 → 0 ≤ (ℜ‘𝑥)) |
15 | 0re 11260 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
16 | eleq1 2826 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝑥 ∈ ℝ ↔ 0 ∈ ℝ)) | |
17 | 15, 16 | mpbiri 258 | . . . . . . . 8 ⊢ (𝑥 = 0 → 𝑥 ∈ ℝ) |
18 | rennim 15274 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (i · 𝑥) ∉ ℝ+) | |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ (𝑥 = 0 → (i · 𝑥) ∉ ℝ+) |
20 | 9, 14, 19 | 3jca 1127 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) |
21 | 8, 20 | impbid1 225 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ 𝑥 = 0)) |
22 | 21 | adantl 481 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ 𝑥 = 0)) |
23 | 4, 22 | riota5 7416 | . . 3 ⊢ (0 ∈ ℂ → (℩𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 0) |
24 | 1, 23 | ax-mp 5 | . 2 ⊢ (℩𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 0 |
25 | 3, 24 | eqtri 2762 | 1 ⊢ (√‘0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ∉ wnel 3043 class class class wbr 5147 ‘cfv 6562 ℩crio 7386 (class class class)co 7430 ℂcc 11150 ℝcr 11151 0cc0 11152 ici 11154 · cmul 11157 ≤ cle 11293 2c2 12318 ℝ+crp 13031 ↑cexp 14098 ℜcre 15132 √csqrt 15268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-rp 13032 df-seq 14039 df-exp 14099 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 |
This theorem is referenced by: sqrt00 15298 abs0 15320 cnsqrt00 15427 cphsqrtcl2 25233 cxpsqrt 26759 cxpsqrtth 26786 loglesqrt 26818 asin1 26951 normgt0 31155 norm0 31156 ftc1anclem3 37681 areacirc 37699 rrncmslem 37818 sqrtcval 43630 |
Copyright terms: Public domain | W3C validator |