MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqrt0 Structured version   Visualization version   GIF version

Theorem sqrt0 15280
Description: The square root of zero is zero. (Contributed by Mario Carneiro, 9-Jul-2013.)
Assertion
Ref Expression
sqrt0 (√‘0) = 0

Proof of Theorem sqrt0
StepHypRef Expression
1 0cn 11253 . . 3 0 ∈ ℂ
2 sqrtval 15276 . . 3 (0 ∈ ℂ → (√‘0) = (𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)))
31, 2ax-mp 5 . 2 (√‘0) = (𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
4 id 22 . . . 4 (0 ∈ ℂ → 0 ∈ ℂ)
5 sqeq0 14160 . . . . . . . . 9 (𝑥 ∈ ℂ → ((𝑥↑2) = 0 ↔ 𝑥 = 0))
65biimpa 476 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑥↑2) = 0) → 𝑥 = 0)
763ad2antr1 1189 . . . . . . 7 ((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → 𝑥 = 0)
87ex 412 . . . . . 6 (𝑥 ∈ ℂ → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → 𝑥 = 0))
9 sq0i 14232 . . . . . . 7 (𝑥 = 0 → (𝑥↑2) = 0)
10 0le0 12367 . . . . . . . 8 0 ≤ 0
11 fveq2 6906 . . . . . . . . 9 (𝑥 = 0 → (ℜ‘𝑥) = (ℜ‘0))
12 re0 15191 . . . . . . . . 9 (ℜ‘0) = 0
1311, 12eqtrdi 2793 . . . . . . . 8 (𝑥 = 0 → (ℜ‘𝑥) = 0)
1410, 13breqtrrid 5181 . . . . . . 7 (𝑥 = 0 → 0 ≤ (ℜ‘𝑥))
15 0re 11263 . . . . . . . . 9 0 ∈ ℝ
16 eleq1 2829 . . . . . . . . 9 (𝑥 = 0 → (𝑥 ∈ ℝ ↔ 0 ∈ ℝ))
1715, 16mpbiri 258 . . . . . . . 8 (𝑥 = 0 → 𝑥 ∈ ℝ)
18 rennim 15278 . . . . . . . 8 (𝑥 ∈ ℝ → (i · 𝑥) ∉ ℝ+)
1917, 18syl 17 . . . . . . 7 (𝑥 = 0 → (i · 𝑥) ∉ ℝ+)
209, 14, 193jca 1129 . . . . . 6 (𝑥 = 0 → ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))
218, 20impbid1 225 . . . . 5 (𝑥 ∈ ℂ → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ 𝑥 = 0))
2221adantl 481 . . . 4 ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ 𝑥 = 0))
234, 22riota5 7417 . . 3 (0 ∈ ℂ → (𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 0)
241, 23ax-mp 5 . 2 (𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 0
253, 24eqtri 2765 1 (√‘0) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3a 1087   = wceq 1540  wcel 2108  wnel 3046   class class class wbr 5143  cfv 6561  crio 7387  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  ici 11157   · cmul 11160  cle 11296  2c2 12321  +crp 13034  cexp 14102  cre 15136  csqrt 15272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274
This theorem is referenced by:  sqrt00  15302  abs0  15324  cnsqrt00  15431  cphsqrtcl2  25220  cxpsqrt  26745  cxpsqrtth  26772  loglesqrt  26804  asin1  26937  normgt0  31146  norm0  31147  ftc1anclem3  37702  areacirc  37720  rrncmslem  37839  sqrtcval  43654
  Copyright terms: Public domain W3C validator