![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqrt0 | Structured version Visualization version GIF version |
Description: The square root of zero is zero. (Contributed by Mario Carneiro, 9-Jul-2013.) |
Ref | Expression |
---|---|
sqrt0 | ⊢ (√‘0) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 11282 | . . 3 ⊢ 0 ∈ ℂ | |
2 | sqrtval 15286 | . . 3 ⊢ (0 ∈ ℂ → (√‘0) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (√‘0) = (℩𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) |
4 | id 22 | . . . 4 ⊢ (0 ∈ ℂ → 0 ∈ ℂ) | |
5 | sqeq0 14170 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℂ → ((𝑥↑2) = 0 ↔ 𝑥 = 0)) | |
6 | 5 | biimpa 476 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ (𝑥↑2) = 0) → 𝑥 = 0) |
7 | 6 | 3ad2antr1 1188 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) → 𝑥 = 0) |
8 | 7 | ex 412 | . . . . . 6 ⊢ (𝑥 ∈ ℂ → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) → 𝑥 = 0)) |
9 | sq0i 14242 | . . . . . . 7 ⊢ (𝑥 = 0 → (𝑥↑2) = 0) | |
10 | 0le0 12394 | . . . . . . . 8 ⊢ 0 ≤ 0 | |
11 | fveq2 6920 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (ℜ‘𝑥) = (ℜ‘0)) | |
12 | re0 15201 | . . . . . . . . 9 ⊢ (ℜ‘0) = 0 | |
13 | 11, 12 | eqtrdi 2796 | . . . . . . . 8 ⊢ (𝑥 = 0 → (ℜ‘𝑥) = 0) |
14 | 10, 13 | breqtrrid 5204 | . . . . . . 7 ⊢ (𝑥 = 0 → 0 ≤ (ℜ‘𝑥)) |
15 | 0re 11292 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
16 | eleq1 2832 | . . . . . . . . 9 ⊢ (𝑥 = 0 → (𝑥 ∈ ℝ ↔ 0 ∈ ℝ)) | |
17 | 15, 16 | mpbiri 258 | . . . . . . . 8 ⊢ (𝑥 = 0 → 𝑥 ∈ ℝ) |
18 | rennim 15288 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (i · 𝑥) ∉ ℝ+) | |
19 | 17, 18 | syl 17 | . . . . . . 7 ⊢ (𝑥 = 0 → (i · 𝑥) ∉ ℝ+) |
20 | 9, 14, 19 | 3jca 1128 | . . . . . 6 ⊢ (𝑥 = 0 → ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) |
21 | 8, 20 | impbid1 225 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ 𝑥 = 0)) |
22 | 21 | adantl 481 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+) ↔ 𝑥 = 0)) |
23 | 4, 22 | riota5 7434 | . . 3 ⊢ (0 ∈ ℂ → (℩𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 0) |
24 | 1, 23 | ax-mp 5 | . 2 ⊢ (℩𝑥 ∈ ℂ ((𝑥↑2) = 0 ∧ 0 ≤ (ℜ‘𝑥) ∧ (i · 𝑥) ∉ ℝ+)) = 0 |
25 | 3, 24 | eqtri 2768 | 1 ⊢ (√‘0) = 0 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 class class class wbr 5166 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 ici 11186 · cmul 11189 ≤ cle 11325 2c2 12348 ℝ+crp 13057 ↑cexp 14112 ℜcre 15146 √csqrt 15282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 |
This theorem is referenced by: sqrt00 15312 abs0 15334 cnsqrt00 15441 cphsqrtcl2 25239 cxpsqrt 26763 cxpsqrtth 26790 loglesqrt 26822 asin1 26955 normgt0 31159 norm0 31160 ftc1anclem3 37655 areacirc 37673 rrncmslem 37792 sqrtcval 43603 |
Copyright terms: Public domain | W3C validator |