HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjvalval Structured version   Visualization version   GIF version

Theorem adjvalval 30200
Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Assertion
Ref Expression
adjvalval ((𝑇 ∈ dom adj𝐴 ∈ ℋ) → ((adj𝑇)‘𝐴) = (𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤)))
Distinct variable groups:   𝑥,𝑤,𝐴   𝑥,𝑇,𝑤

Proof of Theorem adjvalval
StepHypRef Expression
1 adjcl 30195 . . 3 ((𝑇 ∈ dom adj𝐴 ∈ ℋ) → ((adj𝑇)‘𝐴) ∈ ℋ)
2 eqcom 2745 . . . . . . 7 (((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = ((𝑇𝑥) ·ih 𝐴))
3 adj2 30197 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih ((adj𝑇)‘𝐴)))
433com23 1124 . . . . . . . . 9 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih ((adj𝑇)‘𝐴)))
543expa 1116 . . . . . . . 8 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih ((adj𝑇)‘𝐴)))
65eqeq2d 2749 . . . . . . 7 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝑤) = ((𝑇𝑥) ·ih 𝐴) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴))))
72, 6syl5bb 282 . . . . . 6 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴))))
87ralbidva 3119 . . . . 5 ((𝑇 ∈ dom adj𝐴 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴))))
98adantr 480 . . . 4 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴))))
10 simpr 484 . . . . 5 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
111adantr 480 . . . . 5 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((adj𝑇)‘𝐴) ∈ ℋ)
12 hial2eq2 29370 . . . . 5 ((𝑤 ∈ ℋ ∧ ((adj𝑇)‘𝐴) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴)) ↔ 𝑤 = ((adj𝑇)‘𝐴)))
1310, 11, 12syl2anc 583 . . . 4 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴)) ↔ 𝑤 = ((adj𝑇)‘𝐴)))
149, 13bitrd 278 . . 3 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ 𝑤 = ((adj𝑇)‘𝐴)))
151, 14riota5 7242 . 2 ((𝑇 ∈ dom adj𝐴 ∈ ℋ) → (𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤)) = ((adj𝑇)‘𝐴))
1615eqcomd 2744 1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ) → ((adj𝑇)‘𝐴) = (𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  dom cdm 5580  cfv 6418  crio 7211  (class class class)co 7255  chba 29182   ·ih csp 29185  adjcado 29218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-cj 14738  df-re 14739  df-im 14740  df-hvsub 29234  df-adjh 30112
This theorem is referenced by:  nmopadjlei  30351
  Copyright terms: Public domain W3C validator