| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adjvalval | Structured version Visualization version GIF version | ||
| Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adjvalval | ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adjcl 31894 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) | |
| 2 | eqcom 2736 | . . . . . . 7 ⊢ (((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = ((𝑇‘𝑥) ·ih 𝐴)) | |
| 3 | adj2 31896 | . . . . . . . . . 10 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) | |
| 4 | 3 | 3com23 1126 | . . . . . . . . 9 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) |
| 5 | 4 | 3expa 1118 | . . . . . . . 8 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) |
| 6 | 5 | eqeq2d 2740 | . . . . . . 7 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝑤) = ((𝑇‘𝑥) ·ih 𝐴) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
| 7 | 2, 6 | bitrid 283 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
| 8 | 7 | ralbidva 3150 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
| 10 | simpr 484 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ) | |
| 11 | 1 | adantr 480 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) |
| 12 | hial2eq2 31069 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . . 4 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) |
| 14 | 9, 13 | bitrd 279 | . . 3 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) |
| 15 | 1, 14 | riota5 7339 | . 2 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤)) = ((adjℎ‘𝑇)‘𝐴)) |
| 16 | 15 | eqcomd 2735 | 1 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 dom cdm 5623 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 ℋchba 30881 ·ih csp 30884 adjℎcado 30917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-hilex 30961 ax-hfvadd 30962 ax-hvcom 30963 ax-hvass 30964 ax-hv0cl 30965 ax-hvaddid 30966 ax-hfvmul 30967 ax-hvmulid 30968 ax-hvdistr2 30971 ax-hvmul0 30972 ax-hfi 31041 ax-his1 31044 ax-his2 31045 ax-his3 31046 ax-his4 31047 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-cj 15024 df-re 15025 df-im 15026 df-hvsub 30933 df-adjh 31811 |
| This theorem is referenced by: nmopadjlei 32050 |
| Copyright terms: Public domain | W3C validator |