![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > adjvalval | Structured version Visualization version GIF version |
Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adjvalval | ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adjcl 29363 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) | |
2 | eqcom 2785 | . . . . . . 7 ⊢ (((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = ((𝑇‘𝑥) ·ih 𝐴)) | |
3 | adj2 29365 | . . . . . . . . . 10 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) | |
4 | 3 | 3com23 1117 | . . . . . . . . 9 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) |
5 | 4 | 3expa 1108 | . . . . . . . 8 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) |
6 | 5 | eqeq2d 2788 | . . . . . . 7 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝑤) = ((𝑇‘𝑥) ·ih 𝐴) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
7 | 2, 6 | syl5bb 275 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
8 | 7 | ralbidva 3167 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
9 | 8 | adantr 474 | . . . 4 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
10 | simpr 479 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ) | |
11 | 1 | adantr 474 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) |
12 | hial2eq2 28536 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) | |
13 | 10, 11, 12 | syl2anc 579 | . . . 4 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) |
14 | 9, 13 | bitrd 271 | . . 3 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) |
15 | 1, 14 | riota5 6909 | . 2 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤)) = ((adjℎ‘𝑇)‘𝐴)) |
16 | 15 | eqcomd 2784 | 1 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 dom cdm 5355 ‘cfv 6135 ℩crio 6882 (class class class)co 6922 ℋchba 28348 ·ih csp 28351 adjℎcado 28384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-hilex 28428 ax-hfvadd 28429 ax-hvcom 28430 ax-hvass 28431 ax-hv0cl 28432 ax-hvaddid 28433 ax-hfvmul 28434 ax-hvmulid 28435 ax-hvdistr2 28438 ax-hvmul0 28439 ax-hfi 28508 ax-his1 28511 ax-his2 28512 ax-his3 28513 ax-his4 28514 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-2 11438 df-cj 14246 df-re 14247 df-im 14248 df-hvsub 28400 df-adjh 29280 |
This theorem is referenced by: nmopadjlei 29519 |
Copyright terms: Public domain | W3C validator |