Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > adjvalval | Structured version Visualization version GIF version |
Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
adjvalval | ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adjcl 30582 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) | |
2 | eqcom 2743 | . . . . . . 7 ⊢ (((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = ((𝑇‘𝑥) ·ih 𝐴)) | |
3 | adj2 30584 | . . . . . . . . . 10 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) | |
4 | 3 | 3com23 1125 | . . . . . . . . 9 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) |
5 | 4 | 3expa 1117 | . . . . . . . 8 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) |
6 | 5 | eqeq2d 2747 | . . . . . . 7 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝑤) = ((𝑇‘𝑥) ·ih 𝐴) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
7 | 2, 6 | bitrid 282 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
8 | 7 | ralbidva 3168 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
9 | 8 | adantr 481 | . . . 4 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
10 | simpr 485 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ) | |
11 | 1 | adantr 481 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) |
12 | hial2eq2 29757 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) | |
13 | 10, 11, 12 | syl2anc 584 | . . . 4 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) |
14 | 9, 13 | bitrd 278 | . . 3 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) |
15 | 1, 14 | riota5 7323 | . 2 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤)) = ((adjℎ‘𝑇)‘𝐴)) |
16 | 15 | eqcomd 2742 | 1 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 dom cdm 5620 ‘cfv 6479 ℩crio 7292 (class class class)co 7337 ℋchba 29569 ·ih csp 29572 adjℎcado 29605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 ax-hilex 29649 ax-hfvadd 29650 ax-hvcom 29651 ax-hvass 29652 ax-hv0cl 29653 ax-hvaddid 29654 ax-hfvmul 29655 ax-hvmulid 29656 ax-hvdistr2 29659 ax-hvmul0 29660 ax-hfi 29729 ax-his1 29732 ax-his2 29733 ax-his3 29734 ax-his4 29735 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-er 8569 df-map 8688 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-div 11734 df-2 12137 df-cj 14909 df-re 14910 df-im 14911 df-hvsub 29621 df-adjh 30499 |
This theorem is referenced by: nmopadjlei 30738 |
Copyright terms: Public domain | W3C validator |