HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  adjvalval Structured version   Visualization version   GIF version

Theorem adjvalval 31899
Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
Assertion
Ref Expression
adjvalval ((𝑇 ∈ dom adj𝐴 ∈ ℋ) → ((adj𝑇)‘𝐴) = (𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤)))
Distinct variable groups:   𝑥,𝑤,𝐴   𝑥,𝑇,𝑤

Proof of Theorem adjvalval
StepHypRef Expression
1 adjcl 31894 . . 3 ((𝑇 ∈ dom adj𝐴 ∈ ℋ) → ((adj𝑇)‘𝐴) ∈ ℋ)
2 eqcom 2736 . . . . . . 7 (((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = ((𝑇𝑥) ·ih 𝐴))
3 adj2 31896 . . . . . . . . . 10 ((𝑇 ∈ dom adj𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih ((adj𝑇)‘𝐴)))
433com23 1126 . . . . . . . . 9 ((𝑇 ∈ dom adj𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih ((adj𝑇)‘𝐴)))
543expa 1118 . . . . . . . 8 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih ((adj𝑇)‘𝐴)))
65eqeq2d 2740 . . . . . . 7 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝑤) = ((𝑇𝑥) ·ih 𝐴) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴))))
72, 6bitrid 283 . . . . . 6 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴))))
87ralbidva 3150 . . . . 5 ((𝑇 ∈ dom adj𝐴 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴))))
98adantr 480 . . . 4 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴))))
10 simpr 484 . . . . 5 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ)
111adantr 480 . . . . 5 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((adj𝑇)‘𝐴) ∈ ℋ)
12 hial2eq2 31069 . . . . 5 ((𝑤 ∈ ℋ ∧ ((adj𝑇)‘𝐴) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴)) ↔ 𝑤 = ((adj𝑇)‘𝐴)))
1310, 11, 12syl2anc 584 . . . 4 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adj𝑇)‘𝐴)) ↔ 𝑤 = ((adj𝑇)‘𝐴)))
149, 13bitrd 279 . . 3 (((𝑇 ∈ dom adj𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ 𝑤 = ((adj𝑇)‘𝐴)))
151, 14riota5 7339 . 2 ((𝑇 ∈ dom adj𝐴 ∈ ℋ) → (𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤)) = ((adj𝑇)‘𝐴))
1615eqcomd 2735 1 ((𝑇 ∈ dom adj𝐴 ∈ ℋ) → ((adj𝑇)‘𝐴) = (𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  dom cdm 5623  cfv 6486  crio 7309  (class class class)co 7353  chba 30881   ·ih csp 30884  adjcado 30917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-cj 15024  df-re 15025  df-im 15026  df-hvsub 30933  df-adjh 31811
This theorem is referenced by:  nmopadjlei  32050
  Copyright terms: Public domain W3C validator