| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > adjvalval | Structured version Visualization version GIF version | ||
| Description: Value of the value of the adjoint function. (Contributed by NM, 22-Feb-2006.) (Proof shortened by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| adjvalval | ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adjcl 31951 | . . 3 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) | |
| 2 | eqcom 2744 | . . . . . . 7 ⊢ (((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = ((𝑇‘𝑥) ·ih 𝐴)) | |
| 3 | adj2 31953 | . . . . . . . . . 10 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) | |
| 4 | 3 | 3com23 1127 | . . . . . . . . 9 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) |
| 5 | 4 | 3expa 1119 | . . . . . . . 8 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴))) |
| 6 | 5 | eqeq2d 2748 | . . . . . . 7 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝑤) = ((𝑇‘𝑥) ·ih 𝐴) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
| 7 | 2, 6 | bitrid 283 | . . . . . 6 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
| 8 | 7 | ralbidva 3176 | . . . . 5 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
| 9 | 8 | adantr 480 | . . . 4 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ ∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)))) |
| 10 | simpr 484 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → 𝑤 ∈ ℋ) | |
| 11 | 1 | adantr 480 | . . . . 5 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) |
| 12 | hial2eq2 31126 | . . . . 5 ⊢ ((𝑤 ∈ ℋ ∧ ((adjℎ‘𝑇)‘𝐴) ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . . 4 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝑤) = (𝑥 ·ih ((adjℎ‘𝑇)‘𝐴)) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) |
| 14 | 9, 13 | bitrd 279 | . . 3 ⊢ (((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤) ↔ 𝑤 = ((adjℎ‘𝑇)‘𝐴))) |
| 15 | 1, 14 | riota5 7417 | . 2 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤)) = ((adjℎ‘𝑇)‘𝐴)) |
| 16 | 15 | eqcomd 2743 | 1 ⊢ ((𝑇 ∈ dom adjℎ ∧ 𝐴 ∈ ℋ) → ((adjℎ‘𝑇)‘𝐴) = (℩𝑤 ∈ ℋ ∀𝑥 ∈ ℋ ((𝑇‘𝑥) ·ih 𝐴) = (𝑥 ·ih 𝑤))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 dom cdm 5685 ‘cfv 6561 ℩crio 7387 (class class class)co 7431 ℋchba 30938 ·ih csp 30941 adjℎcado 30974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-hilex 31018 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvdistr2 31028 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his2 31102 ax-his3 31103 ax-his4 31104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-2 12329 df-cj 15138 df-re 15139 df-im 15140 df-hvsub 30990 df-adjh 31868 |
| This theorem is referenced by: nmopadjlei 32107 |
| Copyright terms: Public domain | W3C validator |