| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrsinvgval | Structured version Visualization version GIF version | ||
| Description: The inversion operation in the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13209 and df-xrs 17465), however it has an inversion operation. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
| Ref | Expression |
|---|---|
| xrsinvgval | ⊢ (𝐵 ∈ ℝ* → ((invg‘ℝ*𝑠)‘𝐵) = -𝑒𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrsbas 21295 | . . 3 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
| 2 | xrsadd 21296 | . . 3 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
| 3 | xrs0 32944 | . . 3 ⊢ 0 = (0g‘ℝ*𝑠) | |
| 4 | eqid 2729 | . . 3 ⊢ (invg‘ℝ*𝑠) = (invg‘ℝ*𝑠) | |
| 5 | 1, 2, 3, 4 | grpinvval 18912 | . 2 ⊢ (𝐵 ∈ ℝ* → ((invg‘ℝ*𝑠)‘𝐵) = (℩𝑥 ∈ ℝ* (𝑥 +𝑒 𝐵) = 0)) |
| 6 | xnegcl 13173 | . . 3 ⊢ (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*) | |
| 7 | xaddeq0 32676 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝑥 +𝑒 𝐵) = 0 ↔ 𝑥 = -𝑒𝐵)) | |
| 8 | 7 | ancoms 458 | . . 3 ⊢ ((𝐵 ∈ ℝ* ∧ 𝑥 ∈ ℝ*) → ((𝑥 +𝑒 𝐵) = 0 ↔ 𝑥 = -𝑒𝐵)) |
| 9 | 6, 8 | riota5 7373 | . 2 ⊢ (𝐵 ∈ ℝ* → (℩𝑥 ∈ ℝ* (𝑥 +𝑒 𝐵) = 0) = -𝑒𝐵) |
| 10 | 5, 9 | eqtrd 2764 | 1 ⊢ (𝐵 ∈ ℝ* → ((invg‘ℝ*𝑠)‘𝐵) = -𝑒𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 ℩crio 7343 (class class class)co 7387 0cc0 11068 ℝ*cxr 11207 -𝑒cxne 13069 +𝑒 cxad 13070 ℝ*𝑠cxrs 17463 invgcminusg 18866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-xneg 13072 df-xadd 13073 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-xrs 17465 df-minusg 18869 |
| This theorem is referenced by: xrsmulgzz 32947 |
| Copyright terms: Public domain | W3C validator |