Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexdiv Structured version   Visualization version   GIF version

Theorem rexdiv 32900
Description: The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
rexdiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵))

Proof of Theorem rexdiv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 redivcl 11960 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
2 recn 11219 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 11219 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 id 22 . . . . . 6 (𝐵 ≠ 0 → 𝐵 ≠ 0)
52, 3, 43anim123i 1151 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 divcan2 11904 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
75, 6syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
8 oveq2 7413 . . . . . 6 (𝑥 = (𝐴 / 𝐵) → (𝐵 · 𝑥) = (𝐵 · (𝐴 / 𝐵)))
98eqeq1d 2737 . . . . 5 (𝑥 = (𝐴 / 𝐵) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝐴 / 𝐵)) = 𝐴))
109rspcev 3601 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ (𝐵 · (𝐴 / 𝐵)) = 𝐴) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
111, 7, 10syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
12 receu 11882 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
135, 12syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
14 ax-resscn 11186 . . . 4 ℝ ⊆ ℂ
15 id 22 . . . . 5 ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)
1615rgenw 3055 . . . 4 𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)
17 riotass2 7392 . . . 4 (((ℝ ⊆ ℂ ∧ ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)) ∧ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
1814, 16, 17mpanl12 702 . . 3 ((∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
1911, 13, 18syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
20 rexr 11281 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
21 xdivval 32893 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
2220, 21syl3an1 1163 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
23 ressxr 11279 . . . . 5 ℝ ⊆ ℝ*
2423a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ℝ ⊆ ℝ*)
25 rexmul 13287 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 ·e 𝑥) = (𝐵 · 𝑥))
2625eqeq1d 2737 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
2726biimprd 248 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
2827ralrimiva 3132 . . . . 5 (𝐵 ∈ ℝ → ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
29283ad2ant2 1134 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
30 xreceu 32896 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
3120, 30syl3an1 1163 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
32 riotass2 7392 . . . 4 (((ℝ ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴)) ∧ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
3324, 29, 11, 31, 32syl22anc 838 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
3422, 33eqtr4d 2773 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
35 divval 11898 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
365, 35syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
3719, 34, 363eqtr4d 2780 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  ∃!wreu 3357  wss 3926  crio 7361  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129   · cmul 11134  *cxr 11268   / cdiv 11894   ·e cxmu 13127   /𝑒 cxdiv 32891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7988  df-2nd 7989  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-xneg 13128  df-xmul 13130  df-xdiv 32892
This theorem is referenced by:  xdivid  32902  xdiv0  32903  rpxdivcld  32908  esumdivc  34114  probmeasb  34462  coinfliplem  34511
  Copyright terms: Public domain W3C validator