Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexdiv Structured version   Visualization version   GIF version

Theorem rexdiv 31782
Description: The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
rexdiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵))

Proof of Theorem rexdiv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 redivcl 11874 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
2 recn 11141 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 11141 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 id 22 . . . . . 6 (𝐵 ≠ 0 → 𝐵 ≠ 0)
52, 3, 43anim123i 1151 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 divcan2 11821 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
75, 6syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
8 oveq2 7365 . . . . . 6 (𝑥 = (𝐴 / 𝐵) → (𝐵 · 𝑥) = (𝐵 · (𝐴 / 𝐵)))
98eqeq1d 2738 . . . . 5 (𝑥 = (𝐴 / 𝐵) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝐴 / 𝐵)) = 𝐴))
109rspcev 3581 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ (𝐵 · (𝐴 / 𝐵)) = 𝐴) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
111, 7, 10syl2anc 584 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
12 receu 11800 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
135, 12syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
14 ax-resscn 11108 . . . 4 ℝ ⊆ ℂ
15 id 22 . . . . 5 ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)
1615rgenw 3068 . . . 4 𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)
17 riotass2 7344 . . . 4 (((ℝ ⊆ ℂ ∧ ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)) ∧ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
1814, 16, 17mpanl12 700 . . 3 ((∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
1911, 13, 18syl2anc 584 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
20 rexr 11201 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
21 xdivval 31775 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
2220, 21syl3an1 1163 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
23 ressxr 11199 . . . . 5 ℝ ⊆ ℝ*
2423a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ℝ ⊆ ℝ*)
25 rexmul 13190 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 ·e 𝑥) = (𝐵 · 𝑥))
2625eqeq1d 2738 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
2726biimprd 247 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
2827ralrimiva 3143 . . . . 5 (𝐵 ∈ ℝ → ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
29283ad2ant2 1134 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
30 xreceu 31778 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
3120, 30syl3an1 1163 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
32 riotass2 7344 . . . 4 (((ℝ ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴)) ∧ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
3324, 29, 11, 31, 32syl22anc 837 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
3422, 33eqtr4d 2779 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
35 divval 11815 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
365, 35syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
3719, 34, 363eqtr4d 2786 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  ∃!wreu 3351  wss 3910  crio 7312  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   · cmul 11056  *cxr 11188   / cdiv 11812   ·e cxmu 13032   /𝑒 cxdiv 31773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-xneg 13033  df-xmul 13035  df-xdiv 31774
This theorem is referenced by:  xdivid  31784  xdiv0  31785  rpxdivcld  31790  esumdivc  32682  probmeasb  33030  coinfliplem  33078
  Copyright terms: Public domain W3C validator