MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotlem Structured version   Visualization version   GIF version

Theorem quotlem 26265
Description: Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
quotlem.8 𝑅 = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
Assertion
Ref Expression
quotlem (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem quotlem
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . . . 5 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plydiv.g . . . . 5 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plydiv.z . . . . 5 (𝜑𝐺 ≠ 0𝑝)
4 eqid 2736 . . . . . 6 (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 𝑞))
54quotval 26257 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
61, 2, 3, 5syl3anc 1373 . . . 4 (𝜑 → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
7 plydiv.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8 plydiv.tm . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
9 plydiv.rc . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
10 plydiv.m1 . . . . . . 7 (𝜑 → -1 ∈ 𝑆)
117, 8, 9, 10, 1, 2, 3, 4plydivalg 26264 . . . . . 6 (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
12 reurex 3368 . . . . . 6 (∃!𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
1311, 12syl 17 . . . . 5 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
14 addcl 11216 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1514adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
16 mulcl 11218 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
1716adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
18 reccl 11908 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
1918adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
20 neg1cn 12359 . . . . . . 7 -1 ∈ ℂ
2120a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℂ)
22 plyssc 26162 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2322, 1sselid 3961 . . . . . 6 (𝜑𝐹 ∈ (Poly‘ℂ))
2422, 2sselid 3961 . . . . . 6 (𝜑𝐺 ∈ (Poly‘ℂ))
2515, 17, 19, 21, 23, 24, 3, 4plydivalg 26264 . . . . 5 (𝜑 → ∃!𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
26 id 22 . . . . . . 7 (((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
2726rgenw 3056 . . . . . 6 𝑞 ∈ (Poly‘𝑆)(((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
28 riotass2 7397 . . . . . 6 ((((Poly‘𝑆) ⊆ (Poly‘ℂ) ∧ ∀𝑞 ∈ (Poly‘𝑆)(((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ∧ (∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) ∧ ∃!𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))) → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
2922, 27, 28mpanl12 702 . . . . 5 ((∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) ∧ ∃!𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
3013, 25, 29syl2anc 584 . . . 4 (𝜑 → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
316, 30eqtr4d 2774 . . 3 (𝜑 → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
32 riotacl2 7383 . . . 4 (∃!𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))})
3311, 32syl 17 . . 3 (𝜑 → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))})
3431, 33eqeltrd 2835 . 2 (𝜑 → (𝐹 quot 𝐺) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))})
35 oveq2 7418 . . . . . . 7 (𝑞 = (𝐹 quot 𝐺) → (𝐺f · 𝑞) = (𝐺f · (𝐹 quot 𝐺)))
3635oveq2d 7426 . . . . . 6 (𝑞 = (𝐹 quot 𝐺) → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · (𝐹 quot 𝐺))))
37 quotlem.8 . . . . . 6 𝑅 = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
3836, 37eqtr4di 2789 . . . . 5 (𝑞 = (𝐹 quot 𝐺) → (𝐹f − (𝐺f · 𝑞)) = 𝑅)
3938eqeq1d 2738 . . . 4 (𝑞 = (𝐹 quot 𝐺) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝𝑅 = 0𝑝))
4038fveq2d 6885 . . . . 5 (𝑞 = (𝐹 quot 𝐺) → (deg‘(𝐹f − (𝐺f · 𝑞))) = (deg‘𝑅))
4140breq1d 5134 . . . 4 (𝑞 = (𝐹 quot 𝐺) → ((deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺) ↔ (deg‘𝑅) < (deg‘𝐺)))
4239, 41orbi12d 918 . . 3 (𝑞 = (𝐹 quot 𝐺) → (((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
4342elrab 3676 . 2 ((𝐹 quot 𝐺) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))} ↔ ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
4434, 43sylib 218 1 (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  ∃!wreu 3362  {crab 3420  wss 3931   class class class wbr 5124  cfv 6536  crio 7366  (class class class)co 7410  f cof 7674  cc 11132  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cmin 11471  -cneg 11472   / cdiv 11899  0𝑝c0p 25627  Polycply 26146  degcdgr 26149   quot cquot 26255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-0p 25628  df-ply 26150  df-coe 26152  df-dgr 26153  df-quot 26256
This theorem is referenced by:  quotcl  26266  quotdgr  26268
  Copyright terms: Public domain W3C validator