MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotlem Structured version   Visualization version   GIF version

Theorem quotlem 26236
Description: Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
quotlem.8 𝑅 = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
Assertion
Ref Expression
quotlem (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem quotlem
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . . . 5 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plydiv.g . . . . 5 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plydiv.z . . . . 5 (𝜑𝐺 ≠ 0𝑝)
4 eqid 2731 . . . . . 6 (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 𝑞))
54quotval 26228 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
61, 2, 3, 5syl3anc 1373 . . . 4 (𝜑 → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
7 plydiv.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8 plydiv.tm . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
9 plydiv.rc . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
10 plydiv.m1 . . . . . . 7 (𝜑 → -1 ∈ 𝑆)
117, 8, 9, 10, 1, 2, 3, 4plydivalg 26235 . . . . . 6 (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
12 reurex 3350 . . . . . 6 (∃!𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
1311, 12syl 17 . . . . 5 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
14 addcl 11088 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1514adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
16 mulcl 11090 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
1716adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
18 reccl 11783 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
1918adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
20 neg1cn 12110 . . . . . . 7 -1 ∈ ℂ
2120a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℂ)
22 plyssc 26133 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2322, 1sselid 3932 . . . . . 6 (𝜑𝐹 ∈ (Poly‘ℂ))
2422, 2sselid 3932 . . . . . 6 (𝜑𝐺 ∈ (Poly‘ℂ))
2515, 17, 19, 21, 23, 24, 3, 4plydivalg 26235 . . . . 5 (𝜑 → ∃!𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
26 id 22 . . . . . . 7 (((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
2726rgenw 3051 . . . . . 6 𝑞 ∈ (Poly‘𝑆)(((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
28 riotass2 7333 . . . . . 6 ((((Poly‘𝑆) ⊆ (Poly‘ℂ) ∧ ∀𝑞 ∈ (Poly‘𝑆)(((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ∧ (∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) ∧ ∃!𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))) → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
2922, 27, 28mpanl12 702 . . . . 5 ((∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) ∧ ∃!𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
3013, 25, 29syl2anc 584 . . . 4 (𝜑 → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
316, 30eqtr4d 2769 . . 3 (𝜑 → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
32 riotacl2 7319 . . . 4 (∃!𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))})
3311, 32syl 17 . . 3 (𝜑 → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))})
3431, 33eqeltrd 2831 . 2 (𝜑 → (𝐹 quot 𝐺) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))})
35 oveq2 7354 . . . . . . 7 (𝑞 = (𝐹 quot 𝐺) → (𝐺f · 𝑞) = (𝐺f · (𝐹 quot 𝐺)))
3635oveq2d 7362 . . . . . 6 (𝑞 = (𝐹 quot 𝐺) → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · (𝐹 quot 𝐺))))
37 quotlem.8 . . . . . 6 𝑅 = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
3836, 37eqtr4di 2784 . . . . 5 (𝑞 = (𝐹 quot 𝐺) → (𝐹f − (𝐺f · 𝑞)) = 𝑅)
3938eqeq1d 2733 . . . 4 (𝑞 = (𝐹 quot 𝐺) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝𝑅 = 0𝑝))
4038fveq2d 6826 . . . . 5 (𝑞 = (𝐹 quot 𝐺) → (deg‘(𝐹f − (𝐺f · 𝑞))) = (deg‘𝑅))
4140breq1d 5101 . . . 4 (𝑞 = (𝐹 quot 𝐺) → ((deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺) ↔ (deg‘𝑅) < (deg‘𝐺)))
4239, 41orbi12d 918 . . 3 (𝑞 = (𝐹 quot 𝐺) → (((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
4342elrab 3647 . 2 ((𝐹 quot 𝐺) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))} ↔ ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
4434, 43sylib 218 1 (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  ∃!wreu 3344  {crab 3395  wss 3902   class class class wbr 5091  cfv 6481  crio 7302  (class class class)co 7346  f cof 7608  cc 11004  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cmin 11344  -cneg 11345   / cdiv 11774  0𝑝c0p 25598  Polycply 26117  degcdgr 26120   quot cquot 26226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25599  df-ply 26121  df-coe 26123  df-dgr 26124  df-quot 26227
This theorem is referenced by:  quotcl  26237  quotdgr  26239
  Copyright terms: Public domain W3C validator