MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotlem Structured version   Visualization version   GIF version

Theorem quotlem 26357
Description: Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
quotlem.8 𝑅 = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
Assertion
Ref Expression
quotlem (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem quotlem
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . . . 5 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plydiv.g . . . . 5 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plydiv.z . . . . 5 (𝜑𝐺 ≠ 0𝑝)
4 eqid 2735 . . . . . 6 (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 𝑞))
54quotval 26349 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
61, 2, 3, 5syl3anc 1370 . . . 4 (𝜑 → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
7 plydiv.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8 plydiv.tm . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
9 plydiv.rc . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
10 plydiv.m1 . . . . . . 7 (𝜑 → -1 ∈ 𝑆)
117, 8, 9, 10, 1, 2, 3, 4plydivalg 26356 . . . . . 6 (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
12 reurex 3382 . . . . . 6 (∃!𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
1311, 12syl 17 . . . . 5 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
14 addcl 11235 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1514adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
16 mulcl 11237 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
1716adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
18 reccl 11927 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
1918adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
20 neg1cn 12378 . . . . . . 7 -1 ∈ ℂ
2120a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℂ)
22 plyssc 26254 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2322, 1sselid 3993 . . . . . 6 (𝜑𝐹 ∈ (Poly‘ℂ))
2422, 2sselid 3993 . . . . . 6 (𝜑𝐺 ∈ (Poly‘ℂ))
2515, 17, 19, 21, 23, 24, 3, 4plydivalg 26356 . . . . 5 (𝜑 → ∃!𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
26 id 22 . . . . . . 7 (((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
2726rgenw 3063 . . . . . 6 𝑞 ∈ (Poly‘𝑆)(((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))
28 riotass2 7418 . . . . . 6 ((((Poly‘𝑆) ⊆ (Poly‘ℂ) ∧ ∀𝑞 ∈ (Poly‘𝑆)(((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))) ∧ (∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) ∧ ∃!𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)))) → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
2922, 27, 28mpanl12 702 . . . . 5 ((∃𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) ∧ ∃!𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
3013, 25, 29syl2anc 584 . . . 4 (𝜑 → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
316, 30eqtr4d 2778 . . 3 (𝜑 → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))))
32 riotacl2 7404 . . . 4 (∃!𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))})
3311, 32syl 17 . . 3 (𝜑 → (𝑞 ∈ (Poly‘𝑆)((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))})
3431, 33eqeltrd 2839 . 2 (𝜑 → (𝐹 quot 𝐺) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))})
35 oveq2 7439 . . . . . . 7 (𝑞 = (𝐹 quot 𝐺) → (𝐺f · 𝑞) = (𝐺f · (𝐹 quot 𝐺)))
3635oveq2d 7447 . . . . . 6 (𝑞 = (𝐹 quot 𝐺) → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · (𝐹 quot 𝐺))))
37 quotlem.8 . . . . . 6 𝑅 = (𝐹f − (𝐺f · (𝐹 quot 𝐺)))
3836, 37eqtr4di 2793 . . . . 5 (𝑞 = (𝐹 quot 𝐺) → (𝐹f − (𝐺f · 𝑞)) = 𝑅)
3938eqeq1d 2737 . . . 4 (𝑞 = (𝐹 quot 𝐺) → ((𝐹f − (𝐺f · 𝑞)) = 0𝑝𝑅 = 0𝑝))
4038fveq2d 6911 . . . . 5 (𝑞 = (𝐹 quot 𝐺) → (deg‘(𝐹f − (𝐺f · 𝑞))) = (deg‘𝑅))
4140breq1d 5158 . . . 4 (𝑞 = (𝐹 quot 𝐺) → ((deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺) ↔ (deg‘𝑅) < (deg‘𝐺)))
4239, 41orbi12d 918 . . 3 (𝑞 = (𝐹 quot 𝐺) → (((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
4342elrab 3695 . 2 ((𝐹 quot 𝐺) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹f − (𝐺f · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 𝑞))) < (deg‘𝐺))} ↔ ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
4434, 43sylib 218 1 (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  ∃!wreu 3376  {crab 3433  wss 3963   class class class wbr 5148  cfv 6563  crio 7387  (class class class)co 7431  f cof 7695  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cmin 11490  -cneg 11491   / cdiv 11918  0𝑝c0p 25718  Polycply 26238  degcdgr 26241   quot cquot 26347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-rlim 15522  df-sum 15720  df-0p 25719  df-ply 26242  df-coe 26244  df-dgr 26245  df-quot 26348
This theorem is referenced by:  quotcl  26358  quotdgr  26360
  Copyright terms: Public domain W3C validator