| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for rngqiprngfu 21234. (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| Ref | Expression |
|---|---|
| rngqiprngfulem4 | ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngfu.n | . . . . . 6 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 2 | 1 | oveq2i 7401 | . . . . 5 ⊢ (𝐸 − 𝑈) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 )) |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐸 − 𝑈) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
| 4 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 6 | rngqiprngfu.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 7 | rngqiprngfu.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 8 | rngabl 20071 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Abel) |
| 10 | rngqiprngfu.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 11 | rngqiprngfu.j | . . . . . 6 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 12 | rngqiprngfu.u | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 13 | rngqiprngfu.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 14 | rngqiprngfu.1 | . . . . . 6 ⊢ 1 = (1r‘𝐽) | |
| 15 | rngqiprngfu.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 16 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 17 | rngqiprngfu.v | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 18 | rngqiprngfu.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 19 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18 | rngqiprngfulem2 21229 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 20 | rnggrp 20074 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 21 | 7, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 22 | 7, 10, 11, 12, 4, 13, 14 | rngqiprng1elbas 21203 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 23 | 4, 13 | rngcl 20080 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ 𝐵) |
| 24 | 7, 22, 19, 23 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐵) |
| 25 | 4, 6 | grpsubcl 18959 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 26 | 21, 19, 24, 25 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 27 | 4, 5, 6, 9, 19, 26, 22 | ablsubsub4 19755 | . . . 4 ⊢ (𝜑 → ((𝐸 − (𝐸 − ( 1 · 𝐸))) − 1 ) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
| 28 | 4, 6, 9, 19, 24 | ablnncan 19757 | . . . . 5 ⊢ (𝜑 → (𝐸 − (𝐸 − ( 1 · 𝐸))) = ( 1 · 𝐸)) |
| 29 | 28 | oveq1d 7405 | . . . 4 ⊢ (𝜑 → ((𝐸 − (𝐸 − ( 1 · 𝐸))) − 1 ) = (( 1 · 𝐸) − 1 )) |
| 30 | 3, 27, 29 | 3eqtr2d 2771 | . . 3 ⊢ (𝜑 → (𝐸 − 𝑈) = (( 1 · 𝐸) − 1 )) |
| 31 | ringrng 20201 | . . . . . . . . . 10 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
| 32 | 12, 31 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ Rng) |
| 33 | 11, 32 | eqeltrrid 2834 | . . . . . . . 8 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 34 | 7, 10, 33 | rng2idlnsg 21183 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 35 | nsgsubg 19097 | . . . . . . 7 ⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
| 36 | 34, 35 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 37 | 7, 10, 11, 12, 4, 13, 14 | rngqiprngghmlem1 21204 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ (Base‘𝐽)) |
| 38 | 19, 37 | mpdan 687 | . . . . . . 7 ⊢ (𝜑 → ( 1 · 𝐸) ∈ (Base‘𝐽)) |
| 39 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 40 | 10, 11, 39 | 2idlbas 21180 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐽) = 𝐼) |
| 41 | 38, 40 | eleqtrd 2831 | . . . . . 6 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐼) |
| 42 | 39, 14 | ringidcl 20181 | . . . . . . . 8 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
| 43 | 12, 42 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ (Base‘𝐽)) |
| 44 | 43, 40 | eleqtrd 2831 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝐼) |
| 45 | eqid 2730 | . . . . . . 7 ⊢ (-g‘𝐽) = (-g‘𝐽) | |
| 46 | 6, 11, 45 | subgsub 19077 | . . . . . 6 ⊢ ((𝐼 ∈ (SubGrp‘𝑅) ∧ ( 1 · 𝐸) ∈ 𝐼 ∧ 1 ∈ 𝐼) → (( 1 · 𝐸) − 1 ) = (( 1 · 𝐸)(-g‘𝐽) 1 )) |
| 47 | 36, 41, 44, 46 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) = (( 1 · 𝐸)(-g‘𝐽) 1 )) |
| 48 | 12 | ringgrpd 20158 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Grp) |
| 49 | 39, 45 | grpsubcl 18959 | . . . . . 6 ⊢ ((𝐽 ∈ Grp ∧ ( 1 · 𝐸) ∈ (Base‘𝐽) ∧ 1 ∈ (Base‘𝐽)) → (( 1 · 𝐸)(-g‘𝐽) 1 ) ∈ (Base‘𝐽)) |
| 50 | 48, 38, 43, 49 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸)(-g‘𝐽) 1 ) ∈ (Base‘𝐽)) |
| 51 | 47, 50 | eqeltrd 2829 | . . . 4 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) ∈ (Base‘𝐽)) |
| 52 | 51, 40 | eleqtrd 2831 | . . 3 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) ∈ 𝐼) |
| 53 | 30, 52 | eqeltrd 2829 | . 2 ⊢ (𝜑 → (𝐸 − 𝑈) ∈ 𝐼) |
| 54 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18, 6, 5, 1 | rngqiprngfulem3 21230 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| 55 | 4, 6, 15 | qusecsub 19772 | . . 3 ⊢ (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑈 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵)) → ([𝑈] ∼ = [𝐸] ∼ ↔ (𝐸 − 𝑈) ∈ 𝐼)) |
| 56 | 9, 36, 54, 19, 55 | syl22anc 838 | . 2 ⊢ (𝜑 → ([𝑈] ∼ = [𝐸] ∼ ↔ (𝐸 − 𝑈) ∈ 𝐼)) |
| 57 | 53, 56 | mpbird 257 | 1 ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 [cec 8672 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 .rcmulr 17228 /s cqus 17475 Grpcgrp 18872 -gcsg 18874 SubGrpcsubg 19059 NrmSGrpcnsg 19060 ~QG cqg 19061 Abelcabl 19718 Rngcrng 20068 1rcur 20097 Ringcrg 20149 2Idealc2idl 21166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-ec 8676 df-qs 8680 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-imas 17478 df-qus 17479 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-nsg 19063 df-eqg 19064 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-oppr 20253 df-subrng 20462 df-lss 20845 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-2idl 21167 |
| This theorem is referenced by: rngqiprngfu 21234 |
| Copyright terms: Public domain | W3C validator |