| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for rngqiprngfu 21258. (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| Ref | Expression |
|---|---|
| rngqiprngfulem4 | ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngfu.n | . . . . . 6 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 2 | 1 | oveq2i 7365 | . . . . 5 ⊢ (𝐸 − 𝑈) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 )) |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐸 − 𝑈) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
| 4 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 6 | rngqiprngfu.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 7 | rngqiprngfu.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 8 | rngabl 20077 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Abel) |
| 10 | rngqiprngfu.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 11 | rngqiprngfu.j | . . . . . 6 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 12 | rngqiprngfu.u | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 13 | rngqiprngfu.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 14 | rngqiprngfu.1 | . . . . . 6 ⊢ 1 = (1r‘𝐽) | |
| 15 | rngqiprngfu.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 16 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 17 | rngqiprngfu.v | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 18 | rngqiprngfu.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 19 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18 | rngqiprngfulem2 21253 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 20 | rnggrp 20080 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 21 | 7, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 22 | 7, 10, 11, 12, 4, 13, 14 | rngqiprng1elbas 21227 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 23 | 4, 13 | rngcl 20086 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ 𝐵) |
| 24 | 7, 22, 19, 23 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐵) |
| 25 | 4, 6 | grpsubcl 18937 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 26 | 21, 19, 24, 25 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 27 | 4, 5, 6, 9, 19, 26, 22 | ablsubsub4 19734 | . . . 4 ⊢ (𝜑 → ((𝐸 − (𝐸 − ( 1 · 𝐸))) − 1 ) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
| 28 | 4, 6, 9, 19, 24 | ablnncan 19736 | . . . . 5 ⊢ (𝜑 → (𝐸 − (𝐸 − ( 1 · 𝐸))) = ( 1 · 𝐸)) |
| 29 | 28 | oveq1d 7369 | . . . 4 ⊢ (𝜑 → ((𝐸 − (𝐸 − ( 1 · 𝐸))) − 1 ) = (( 1 · 𝐸) − 1 )) |
| 30 | 3, 27, 29 | 3eqtr2d 2774 | . . 3 ⊢ (𝜑 → (𝐸 − 𝑈) = (( 1 · 𝐸) − 1 )) |
| 31 | ringrng 20207 | . . . . . . . . . 10 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
| 32 | 12, 31 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ Rng) |
| 33 | 11, 32 | eqeltrrid 2838 | . . . . . . . 8 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 34 | 7, 10, 33 | rng2idlnsg 21207 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 35 | nsgsubg 19074 | . . . . . . 7 ⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
| 36 | 34, 35 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 37 | 7, 10, 11, 12, 4, 13, 14 | rngqiprngghmlem1 21228 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ (Base‘𝐽)) |
| 38 | 19, 37 | mpdan 687 | . . . . . . 7 ⊢ (𝜑 → ( 1 · 𝐸) ∈ (Base‘𝐽)) |
| 39 | eqid 2733 | . . . . . . . 8 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 40 | 10, 11, 39 | 2idlbas 21204 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐽) = 𝐼) |
| 41 | 38, 40 | eleqtrd 2835 | . . . . . 6 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐼) |
| 42 | 39, 14 | ringidcl 20187 | . . . . . . . 8 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
| 43 | 12, 42 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ (Base‘𝐽)) |
| 44 | 43, 40 | eleqtrd 2835 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝐼) |
| 45 | eqid 2733 | . . . . . . 7 ⊢ (-g‘𝐽) = (-g‘𝐽) | |
| 46 | 6, 11, 45 | subgsub 19055 | . . . . . 6 ⊢ ((𝐼 ∈ (SubGrp‘𝑅) ∧ ( 1 · 𝐸) ∈ 𝐼 ∧ 1 ∈ 𝐼) → (( 1 · 𝐸) − 1 ) = (( 1 · 𝐸)(-g‘𝐽) 1 )) |
| 47 | 36, 41, 44, 46 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) = (( 1 · 𝐸)(-g‘𝐽) 1 )) |
| 48 | 12 | ringgrpd 20164 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Grp) |
| 49 | 39, 45 | grpsubcl 18937 | . . . . . 6 ⊢ ((𝐽 ∈ Grp ∧ ( 1 · 𝐸) ∈ (Base‘𝐽) ∧ 1 ∈ (Base‘𝐽)) → (( 1 · 𝐸)(-g‘𝐽) 1 ) ∈ (Base‘𝐽)) |
| 50 | 48, 38, 43, 49 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸)(-g‘𝐽) 1 ) ∈ (Base‘𝐽)) |
| 51 | 47, 50 | eqeltrd 2833 | . . . 4 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) ∈ (Base‘𝐽)) |
| 52 | 51, 40 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) ∈ 𝐼) |
| 53 | 30, 52 | eqeltrd 2833 | . 2 ⊢ (𝜑 → (𝐸 − 𝑈) ∈ 𝐼) |
| 54 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18, 6, 5, 1 | rngqiprngfulem3 21254 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| 55 | 4, 6, 15 | qusecsub 19751 | . . 3 ⊢ (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑈 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵)) → ([𝑈] ∼ = [𝐸] ∼ ↔ (𝐸 − 𝑈) ∈ 𝐼)) |
| 56 | 9, 36, 54, 19, 55 | syl22anc 838 | . 2 ⊢ (𝜑 → ([𝑈] ∼ = [𝐸] ∼ ↔ (𝐸 − 𝑈) ∈ 𝐼)) |
| 57 | 53, 56 | mpbird 257 | 1 ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 [cec 8628 Basecbs 17124 ↾s cress 17145 +gcplusg 17165 .rcmulr 17166 /s cqus 17413 Grpcgrp 18850 -gcsg 18852 SubGrpcsubg 19037 NrmSGrpcnsg 19038 ~QG cqg 19039 Abelcabl 19697 Rngcrng 20074 1rcur 20103 Ringcrg 20155 2Idealc2idl 21190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-ec 8632 df-qs 8636 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-0g 17349 df-imas 17416 df-qus 17417 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-sbg 18855 df-subg 19040 df-nsg 19041 df-eqg 19042 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-oppr 20259 df-subrng 20465 df-lss 20869 df-sra 21111 df-rgmod 21112 df-lidl 21149 df-2idl 21191 |
| This theorem is referenced by: rngqiprngfu 21258 |
| Copyright terms: Public domain | W3C validator |