![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngqiprngfulem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for rngqiprngfu 21345. (Contributed by AV, 16-Mar-2025.) |
Ref | Expression |
---|---|
rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
Ref | Expression |
---|---|
rngqiprngfulem4 | ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngqiprngfu.n | . . . . . 6 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
2 | 1 | oveq2i 7442 | . . . . 5 ⊢ (𝐸 − 𝑈) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 )) |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐸 − 𝑈) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
4 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
5 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
6 | rngqiprngfu.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
7 | rngqiprngfu.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
8 | rngabl 20173 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Abel) |
10 | rngqiprngfu.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
11 | rngqiprngfu.j | . . . . . 6 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
12 | rngqiprngfu.u | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
13 | rngqiprngfu.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
14 | rngqiprngfu.1 | . . . . . 6 ⊢ 1 = (1r‘𝐽) | |
15 | rngqiprngfu.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
16 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
17 | rngqiprngfu.v | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
18 | rngqiprngfu.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
19 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18 | rngqiprngfulem2 21340 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
20 | rnggrp 20176 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
21 | 7, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
22 | 7, 10, 11, 12, 4, 13, 14 | rngqiprng1elbas 21314 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ 𝐵) |
23 | 4, 13 | rngcl 20182 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ 𝐵) |
24 | 7, 22, 19, 23 | syl3anc 1370 | . . . . . 6 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐵) |
25 | 4, 6 | grpsubcl 19051 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
26 | 21, 19, 24, 25 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
27 | 4, 5, 6, 9, 19, 26, 22 | ablsubsub4 19851 | . . . 4 ⊢ (𝜑 → ((𝐸 − (𝐸 − ( 1 · 𝐸))) − 1 ) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
28 | 4, 6, 9, 19, 24 | ablnncan 19853 | . . . . 5 ⊢ (𝜑 → (𝐸 − (𝐸 − ( 1 · 𝐸))) = ( 1 · 𝐸)) |
29 | 28 | oveq1d 7446 | . . . 4 ⊢ (𝜑 → ((𝐸 − (𝐸 − ( 1 · 𝐸))) − 1 ) = (( 1 · 𝐸) − 1 )) |
30 | 3, 27, 29 | 3eqtr2d 2781 | . . 3 ⊢ (𝜑 → (𝐸 − 𝑈) = (( 1 · 𝐸) − 1 )) |
31 | ringrng 20299 | . . . . . . . . . 10 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
32 | 12, 31 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ Rng) |
33 | 11, 32 | eqeltrrid 2844 | . . . . . . . 8 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
34 | 7, 10, 33 | rng2idlnsg 21294 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
35 | nsgsubg 19189 | . . . . . . 7 ⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
36 | 34, 35 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
37 | 7, 10, 11, 12, 4, 13, 14 | rngqiprngghmlem1 21315 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ (Base‘𝐽)) |
38 | 19, 37 | mpdan 687 | . . . . . . 7 ⊢ (𝜑 → ( 1 · 𝐸) ∈ (Base‘𝐽)) |
39 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
40 | 10, 11, 39 | 2idlbas 21291 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐽) = 𝐼) |
41 | 38, 40 | eleqtrd 2841 | . . . . . 6 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐼) |
42 | 39, 14 | ringidcl 20280 | . . . . . . . 8 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
43 | 12, 42 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ (Base‘𝐽)) |
44 | 43, 40 | eleqtrd 2841 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝐼) |
45 | eqid 2735 | . . . . . . 7 ⊢ (-g‘𝐽) = (-g‘𝐽) | |
46 | 6, 11, 45 | subgsub 19169 | . . . . . 6 ⊢ ((𝐼 ∈ (SubGrp‘𝑅) ∧ ( 1 · 𝐸) ∈ 𝐼 ∧ 1 ∈ 𝐼) → (( 1 · 𝐸) − 1 ) = (( 1 · 𝐸)(-g‘𝐽) 1 )) |
47 | 36, 41, 44, 46 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) = (( 1 · 𝐸)(-g‘𝐽) 1 )) |
48 | 12 | ringgrpd 20260 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Grp) |
49 | 39, 45 | grpsubcl 19051 | . . . . . 6 ⊢ ((𝐽 ∈ Grp ∧ ( 1 · 𝐸) ∈ (Base‘𝐽) ∧ 1 ∈ (Base‘𝐽)) → (( 1 · 𝐸)(-g‘𝐽) 1 ) ∈ (Base‘𝐽)) |
50 | 48, 38, 43, 49 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸)(-g‘𝐽) 1 ) ∈ (Base‘𝐽)) |
51 | 47, 50 | eqeltrd 2839 | . . . 4 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) ∈ (Base‘𝐽)) |
52 | 51, 40 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) ∈ 𝐼) |
53 | 30, 52 | eqeltrd 2839 | . 2 ⊢ (𝜑 → (𝐸 − 𝑈) ∈ 𝐼) |
54 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18, 6, 5, 1 | rngqiprngfulem3 21341 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
55 | 4, 6, 15 | qusecsub 19868 | . . 3 ⊢ (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑈 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵)) → ([𝑈] ∼ = [𝐸] ∼ ↔ (𝐸 − 𝑈) ∈ 𝐼)) |
56 | 9, 36, 54, 19, 55 | syl22anc 839 | . 2 ⊢ (𝜑 → ([𝑈] ∼ = [𝐸] ∼ ↔ (𝐸 − 𝑈) ∈ 𝐼)) |
57 | 53, 56 | mpbird 257 | 1 ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 [cec 8742 Basecbs 17245 ↾s cress 17274 +gcplusg 17298 .rcmulr 17299 /s cqus 17552 Grpcgrp 18964 -gcsg 18966 SubGrpcsubg 19151 NrmSGrpcnsg 19152 ~QG cqg 19153 Abelcabl 19814 Rngcrng 20170 1rcur 20199 Ringcrg 20251 2Idealc2idl 21277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-tpos 8250 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-ec 8746 df-qs 8750 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-0g 17488 df-imas 17555 df-qus 17556 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-nsg 19155 df-eqg 19156 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-oppr 20351 df-subrng 20563 df-lss 20948 df-sra 21190 df-rgmod 21191 df-lidl 21236 df-2idl 21278 |
This theorem is referenced by: rngqiprngfu 21345 |
Copyright terms: Public domain | W3C validator |