MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngfulem4 Structured version   Visualization version   GIF version

Theorem rngqiprngfulem4 21252
Description: Lemma 4 for rngqiprngfu 21255. (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
Assertion
Ref Expression
rngqiprngfulem4 (𝜑 → [𝑈] = [𝐸] )

Proof of Theorem rngqiprngfulem4
StepHypRef Expression
1 rngqiprngfu.n . . . . . 6 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
21oveq2i 7357 . . . . 5 (𝐸 𝑈) = (𝐸 ((𝐸 ( 1 · 𝐸)) + 1 ))
32a1i 11 . . . 4 (𝜑 → (𝐸 𝑈) = (𝐸 ((𝐸 ( 1 · 𝐸)) + 1 )))
4 rngqiprngfu.b . . . . 5 𝐵 = (Base‘𝑅)
5 rngqiprngfu.a . . . . 5 + = (+g𝑅)
6 rngqiprngfu.m . . . . 5 = (-g𝑅)
7 rngqiprngfu.r . . . . . 6 (𝜑𝑅 ∈ Rng)
8 rngabl 20074 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
97, 8syl 17 . . . . 5 (𝜑𝑅 ∈ Abel)
10 rngqiprngfu.i . . . . . 6 (𝜑𝐼 ∈ (2Ideal‘𝑅))
11 rngqiprngfu.j . . . . . 6 𝐽 = (𝑅s 𝐼)
12 rngqiprngfu.u . . . . . 6 (𝜑𝐽 ∈ Ring)
13 rngqiprngfu.t . . . . . 6 · = (.r𝑅)
14 rngqiprngfu.1 . . . . . 6 1 = (1r𝐽)
15 rngqiprngfu.g . . . . . 6 = (𝑅 ~QG 𝐼)
16 rngqiprngfu.q . . . . . 6 𝑄 = (𝑅 /s )
17 rngqiprngfu.v . . . . . 6 (𝜑𝑄 ∈ Ring)
18 rngqiprngfu.e . . . . . 6 (𝜑𝐸 ∈ (1r𝑄))
197, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18rngqiprngfulem2 21250 . . . . 5 (𝜑𝐸𝐵)
20 rnggrp 20077 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
217, 20syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
227, 10, 11, 12, 4, 13, 14rngqiprng1elbas 21224 . . . . . . 7 (𝜑1𝐵)
234, 13rngcl 20083 . . . . . . 7 ((𝑅 ∈ Rng ∧ 1𝐵𝐸𝐵) → ( 1 · 𝐸) ∈ 𝐵)
247, 22, 19, 23syl3anc 1373 . . . . . 6 (𝜑 → ( 1 · 𝐸) ∈ 𝐵)
254, 6grpsubcl 18933 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐸𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 ( 1 · 𝐸)) ∈ 𝐵)
2621, 19, 24, 25syl3anc 1373 . . . . 5 (𝜑 → (𝐸 ( 1 · 𝐸)) ∈ 𝐵)
274, 5, 6, 9, 19, 26, 22ablsubsub4 19731 . . . 4 (𝜑 → ((𝐸 (𝐸 ( 1 · 𝐸))) 1 ) = (𝐸 ((𝐸 ( 1 · 𝐸)) + 1 )))
284, 6, 9, 19, 24ablnncan 19733 . . . . 5 (𝜑 → (𝐸 (𝐸 ( 1 · 𝐸))) = ( 1 · 𝐸))
2928oveq1d 7361 . . . 4 (𝜑 → ((𝐸 (𝐸 ( 1 · 𝐸))) 1 ) = (( 1 · 𝐸) 1 ))
303, 27, 293eqtr2d 2772 . . 3 (𝜑 → (𝐸 𝑈) = (( 1 · 𝐸) 1 ))
31 ringrng 20204 . . . . . . . . . 10 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
3212, 31syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ Rng)
3311, 32eqeltrrid 2836 . . . . . . . 8 (𝜑 → (𝑅s 𝐼) ∈ Rng)
347, 10, 33rng2idlnsg 21204 . . . . . . 7 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
35 nsgsubg 19071 . . . . . . 7 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
3634, 35syl 17 . . . . . 6 (𝜑𝐼 ∈ (SubGrp‘𝑅))
377, 10, 11, 12, 4, 13, 14rngqiprngghmlem1 21225 . . . . . . . 8 ((𝜑𝐸𝐵) → ( 1 · 𝐸) ∈ (Base‘𝐽))
3819, 37mpdan 687 . . . . . . 7 (𝜑 → ( 1 · 𝐸) ∈ (Base‘𝐽))
39 eqid 2731 . . . . . . . 8 (Base‘𝐽) = (Base‘𝐽)
4010, 11, 392idlbas 21201 . . . . . . 7 (𝜑 → (Base‘𝐽) = 𝐼)
4138, 40eleqtrd 2833 . . . . . 6 (𝜑 → ( 1 · 𝐸) ∈ 𝐼)
4239, 14ringidcl 20184 . . . . . . . 8 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
4312, 42syl 17 . . . . . . 7 (𝜑1 ∈ (Base‘𝐽))
4443, 40eleqtrd 2833 . . . . . 6 (𝜑1𝐼)
45 eqid 2731 . . . . . . 7 (-g𝐽) = (-g𝐽)
466, 11, 45subgsub 19051 . . . . . 6 ((𝐼 ∈ (SubGrp‘𝑅) ∧ ( 1 · 𝐸) ∈ 𝐼1𝐼) → (( 1 · 𝐸) 1 ) = (( 1 · 𝐸)(-g𝐽) 1 ))
4736, 41, 44, 46syl3anc 1373 . . . . 5 (𝜑 → (( 1 · 𝐸) 1 ) = (( 1 · 𝐸)(-g𝐽) 1 ))
4812ringgrpd 20161 . . . . . 6 (𝜑𝐽 ∈ Grp)
4939, 45grpsubcl 18933 . . . . . 6 ((𝐽 ∈ Grp ∧ ( 1 · 𝐸) ∈ (Base‘𝐽) ∧ 1 ∈ (Base‘𝐽)) → (( 1 · 𝐸)(-g𝐽) 1 ) ∈ (Base‘𝐽))
5048, 38, 43, 49syl3anc 1373 . . . . 5 (𝜑 → (( 1 · 𝐸)(-g𝐽) 1 ) ∈ (Base‘𝐽))
5147, 50eqeltrd 2831 . . . 4 (𝜑 → (( 1 · 𝐸) 1 ) ∈ (Base‘𝐽))
5251, 40eleqtrd 2833 . . 3 (𝜑 → (( 1 · 𝐸) 1 ) ∈ 𝐼)
5330, 52eqeltrd 2831 . 2 (𝜑 → (𝐸 𝑈) ∈ 𝐼)
547, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18, 6, 5, 1rngqiprngfulem3 21251 . . 3 (𝜑𝑈𝐵)
554, 6, 15qusecsub 19748 . . 3 (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑈𝐵𝐸𝐵)) → ([𝑈] = [𝐸] ↔ (𝐸 𝑈) ∈ 𝐼))
569, 36, 54, 19, 55syl22anc 838 . 2 (𝜑 → ([𝑈] = [𝐸] ↔ (𝐸 𝑈) ∈ 𝐼))
5753, 56mpbird 257 1 (𝜑 → [𝑈] = [𝐸] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  [cec 8620  Basecbs 17120  s cress 17141  +gcplusg 17161  .rcmulr 17162   /s cqus 17409  Grpcgrp 18846  -gcsg 18848  SubGrpcsubg 19033  NrmSGrpcnsg 19034   ~QG cqg 19035  Abelcabl 19694  Rngcrng 20071  1rcur 20100  Ringcrg 20152  2Idealc2idl 21187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-ec 8624  df-qs 8628  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-nsg 19037  df-eqg 19038  df-cmn 19695  df-abl 19696  df-mgp 20060  df-rng 20072  df-ur 20101  df-ring 20154  df-oppr 20256  df-subrng 20462  df-lss 20866  df-sra 21108  df-rgmod 21109  df-lidl 21146  df-2idl 21188
This theorem is referenced by:  rngqiprngfu  21255
  Copyright terms: Public domain W3C validator