| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for rngqiprngfu 21278. (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| Ref | Expression |
|---|---|
| rngqiprngfulem4 | ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngfu.n | . . . . . 6 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 2 | 1 | oveq2i 7416 | . . . . 5 ⊢ (𝐸 − 𝑈) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 )) |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐸 − 𝑈) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
| 4 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 6 | rngqiprngfu.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 7 | rngqiprngfu.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 8 | rngabl 20115 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Abel) |
| 10 | rngqiprngfu.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 11 | rngqiprngfu.j | . . . . . 6 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 12 | rngqiprngfu.u | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 13 | rngqiprngfu.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 14 | rngqiprngfu.1 | . . . . . 6 ⊢ 1 = (1r‘𝐽) | |
| 15 | rngqiprngfu.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 16 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 17 | rngqiprngfu.v | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 18 | rngqiprngfu.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 19 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18 | rngqiprngfulem2 21273 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 20 | rnggrp 20118 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 21 | 7, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 22 | 7, 10, 11, 12, 4, 13, 14 | rngqiprng1elbas 21247 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 23 | 4, 13 | rngcl 20124 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ 𝐵) |
| 24 | 7, 22, 19, 23 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐵) |
| 25 | 4, 6 | grpsubcl 19003 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 26 | 21, 19, 24, 25 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 27 | 4, 5, 6, 9, 19, 26, 22 | ablsubsub4 19799 | . . . 4 ⊢ (𝜑 → ((𝐸 − (𝐸 − ( 1 · 𝐸))) − 1 ) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
| 28 | 4, 6, 9, 19, 24 | ablnncan 19801 | . . . . 5 ⊢ (𝜑 → (𝐸 − (𝐸 − ( 1 · 𝐸))) = ( 1 · 𝐸)) |
| 29 | 28 | oveq1d 7420 | . . . 4 ⊢ (𝜑 → ((𝐸 − (𝐸 − ( 1 · 𝐸))) − 1 ) = (( 1 · 𝐸) − 1 )) |
| 30 | 3, 27, 29 | 3eqtr2d 2776 | . . 3 ⊢ (𝜑 → (𝐸 − 𝑈) = (( 1 · 𝐸) − 1 )) |
| 31 | ringrng 20245 | . . . . . . . . . 10 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
| 32 | 12, 31 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ Rng) |
| 33 | 11, 32 | eqeltrrid 2839 | . . . . . . . 8 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 34 | 7, 10, 33 | rng2idlnsg 21227 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 35 | nsgsubg 19141 | . . . . . . 7 ⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
| 36 | 34, 35 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 37 | 7, 10, 11, 12, 4, 13, 14 | rngqiprngghmlem1 21248 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ (Base‘𝐽)) |
| 38 | 19, 37 | mpdan 687 | . . . . . . 7 ⊢ (𝜑 → ( 1 · 𝐸) ∈ (Base‘𝐽)) |
| 39 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 40 | 10, 11, 39 | 2idlbas 21224 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐽) = 𝐼) |
| 41 | 38, 40 | eleqtrd 2836 | . . . . . 6 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐼) |
| 42 | 39, 14 | ringidcl 20225 | . . . . . . . 8 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
| 43 | 12, 42 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ (Base‘𝐽)) |
| 44 | 43, 40 | eleqtrd 2836 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝐼) |
| 45 | eqid 2735 | . . . . . . 7 ⊢ (-g‘𝐽) = (-g‘𝐽) | |
| 46 | 6, 11, 45 | subgsub 19121 | . . . . . 6 ⊢ ((𝐼 ∈ (SubGrp‘𝑅) ∧ ( 1 · 𝐸) ∈ 𝐼 ∧ 1 ∈ 𝐼) → (( 1 · 𝐸) − 1 ) = (( 1 · 𝐸)(-g‘𝐽) 1 )) |
| 47 | 36, 41, 44, 46 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) = (( 1 · 𝐸)(-g‘𝐽) 1 )) |
| 48 | 12 | ringgrpd 20202 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Grp) |
| 49 | 39, 45 | grpsubcl 19003 | . . . . . 6 ⊢ ((𝐽 ∈ Grp ∧ ( 1 · 𝐸) ∈ (Base‘𝐽) ∧ 1 ∈ (Base‘𝐽)) → (( 1 · 𝐸)(-g‘𝐽) 1 ) ∈ (Base‘𝐽)) |
| 50 | 48, 38, 43, 49 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸)(-g‘𝐽) 1 ) ∈ (Base‘𝐽)) |
| 51 | 47, 50 | eqeltrd 2834 | . . . 4 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) ∈ (Base‘𝐽)) |
| 52 | 51, 40 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) ∈ 𝐼) |
| 53 | 30, 52 | eqeltrd 2834 | . 2 ⊢ (𝜑 → (𝐸 − 𝑈) ∈ 𝐼) |
| 54 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18, 6, 5, 1 | rngqiprngfulem3 21274 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| 55 | 4, 6, 15 | qusecsub 19816 | . . 3 ⊢ (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑈 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵)) → ([𝑈] ∼ = [𝐸] ∼ ↔ (𝐸 − 𝑈) ∈ 𝐼)) |
| 56 | 9, 36, 54, 19, 55 | syl22anc 838 | . 2 ⊢ (𝜑 → ([𝑈] ∼ = [𝐸] ∼ ↔ (𝐸 − 𝑈) ∈ 𝐼)) |
| 57 | 53, 56 | mpbird 257 | 1 ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 [cec 8717 Basecbs 17228 ↾s cress 17251 +gcplusg 17271 .rcmulr 17272 /s cqus 17519 Grpcgrp 18916 -gcsg 18918 SubGrpcsubg 19103 NrmSGrpcnsg 19104 ~QG cqg 19105 Abelcabl 19762 Rngcrng 20112 1rcur 20141 Ringcrg 20193 2Idealc2idl 21210 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-ec 8721 df-qs 8725 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-0g 17455 df-imas 17522 df-qus 17523 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-nsg 19107 df-eqg 19108 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-subrng 20506 df-lss 20889 df-sra 21131 df-rgmod 21132 df-lidl 21169 df-2idl 21211 |
| This theorem is referenced by: rngqiprngfu 21278 |
| Copyright terms: Public domain | W3C validator |