| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem4 | Structured version Visualization version GIF version | ||
| Description: Lemma 4 for rngqiprngfu 21203. (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| rngqiprngfu.m | ⊢ − = (-g‘𝑅) |
| rngqiprngfu.a | ⊢ + = (+g‘𝑅) |
| rngqiprngfu.n | ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) |
| Ref | Expression |
|---|---|
| rngqiprngfulem4 | ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngfu.n | . . . . . 6 ⊢ 𝑈 = ((𝐸 − ( 1 · 𝐸)) + 1 ) | |
| 2 | 1 | oveq2i 7380 | . . . . 5 ⊢ (𝐸 − 𝑈) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 )) |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐸 − 𝑈) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
| 4 | rngqiprngfu.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | rngqiprngfu.a | . . . . 5 ⊢ + = (+g‘𝑅) | |
| 6 | rngqiprngfu.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 7 | rngqiprngfu.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 8 | rngabl 20040 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 9 | 7, 8 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Abel) |
| 10 | rngqiprngfu.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 11 | rngqiprngfu.j | . . . . . 6 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 12 | rngqiprngfu.u | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 13 | rngqiprngfu.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 14 | rngqiprngfu.1 | . . . . . 6 ⊢ 1 = (1r‘𝐽) | |
| 15 | rngqiprngfu.g | . . . . . 6 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 16 | rngqiprngfu.q | . . . . . 6 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 17 | rngqiprngfu.v | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 18 | rngqiprngfu.e | . . . . . 6 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 19 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18 | rngqiprngfulem2 21198 | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| 20 | rnggrp 20043 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 21 | 7, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 22 | 7, 10, 11, 12, 4, 13, 14 | rngqiprng1elbas 21172 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ 𝐵) |
| 23 | 4, 13 | rngcl 20049 | . . . . . . 7 ⊢ ((𝑅 ∈ Rng ∧ 1 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ 𝐵) |
| 24 | 7, 22, 19, 23 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐵) |
| 25 | 4, 6 | grpsubcl 18928 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 𝐸 ∈ 𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 26 | 21, 19, 24, 25 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐸 − ( 1 · 𝐸)) ∈ 𝐵) |
| 27 | 4, 5, 6, 9, 19, 26, 22 | ablsubsub4 19724 | . . . 4 ⊢ (𝜑 → ((𝐸 − (𝐸 − ( 1 · 𝐸))) − 1 ) = (𝐸 − ((𝐸 − ( 1 · 𝐸)) + 1 ))) |
| 28 | 4, 6, 9, 19, 24 | ablnncan 19726 | . . . . 5 ⊢ (𝜑 → (𝐸 − (𝐸 − ( 1 · 𝐸))) = ( 1 · 𝐸)) |
| 29 | 28 | oveq1d 7384 | . . . 4 ⊢ (𝜑 → ((𝐸 − (𝐸 − ( 1 · 𝐸))) − 1 ) = (( 1 · 𝐸) − 1 )) |
| 30 | 3, 27, 29 | 3eqtr2d 2770 | . . 3 ⊢ (𝜑 → (𝐸 − 𝑈) = (( 1 · 𝐸) − 1 )) |
| 31 | ringrng 20170 | . . . . . . . . . 10 ⊢ (𝐽 ∈ Ring → 𝐽 ∈ Rng) | |
| 32 | 12, 31 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 ∈ Rng) |
| 33 | 11, 32 | eqeltrrid 2833 | . . . . . . . 8 ⊢ (𝜑 → (𝑅 ↾s 𝐼) ∈ Rng) |
| 34 | 7, 10, 33 | rng2idlnsg 21152 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) |
| 35 | nsgsubg 19066 | . . . . . . 7 ⊢ (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅)) | |
| 36 | 34, 35 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (SubGrp‘𝑅)) |
| 37 | 7, 10, 11, 12, 4, 13, 14 | rngqiprngghmlem1 21173 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐸 ∈ 𝐵) → ( 1 · 𝐸) ∈ (Base‘𝐽)) |
| 38 | 19, 37 | mpdan 687 | . . . . . . 7 ⊢ (𝜑 → ( 1 · 𝐸) ∈ (Base‘𝐽)) |
| 39 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝐽) = (Base‘𝐽) | |
| 40 | 10, 11, 39 | 2idlbas 21149 | . . . . . . 7 ⊢ (𝜑 → (Base‘𝐽) = 𝐼) |
| 41 | 38, 40 | eleqtrd 2830 | . . . . . 6 ⊢ (𝜑 → ( 1 · 𝐸) ∈ 𝐼) |
| 42 | 39, 14 | ringidcl 20150 | . . . . . . . 8 ⊢ (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽)) |
| 43 | 12, 42 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 1 ∈ (Base‘𝐽)) |
| 44 | 43, 40 | eleqtrd 2830 | . . . . . 6 ⊢ (𝜑 → 1 ∈ 𝐼) |
| 45 | eqid 2729 | . . . . . . 7 ⊢ (-g‘𝐽) = (-g‘𝐽) | |
| 46 | 6, 11, 45 | subgsub 19046 | . . . . . 6 ⊢ ((𝐼 ∈ (SubGrp‘𝑅) ∧ ( 1 · 𝐸) ∈ 𝐼 ∧ 1 ∈ 𝐼) → (( 1 · 𝐸) − 1 ) = (( 1 · 𝐸)(-g‘𝐽) 1 )) |
| 47 | 36, 41, 44, 46 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) = (( 1 · 𝐸)(-g‘𝐽) 1 )) |
| 48 | 12 | ringgrpd 20127 | . . . . . 6 ⊢ (𝜑 → 𝐽 ∈ Grp) |
| 49 | 39, 45 | grpsubcl 18928 | . . . . . 6 ⊢ ((𝐽 ∈ Grp ∧ ( 1 · 𝐸) ∈ (Base‘𝐽) ∧ 1 ∈ (Base‘𝐽)) → (( 1 · 𝐸)(-g‘𝐽) 1 ) ∈ (Base‘𝐽)) |
| 50 | 48, 38, 43, 49 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (( 1 · 𝐸)(-g‘𝐽) 1 ) ∈ (Base‘𝐽)) |
| 51 | 47, 50 | eqeltrd 2828 | . . . 4 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) ∈ (Base‘𝐽)) |
| 52 | 51, 40 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → (( 1 · 𝐸) − 1 ) ∈ 𝐼) |
| 53 | 30, 52 | eqeltrd 2828 | . 2 ⊢ (𝜑 → (𝐸 − 𝑈) ∈ 𝐼) |
| 54 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18, 6, 5, 1 | rngqiprngfulem3 21199 | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
| 55 | 4, 6, 15 | qusecsub 19741 | . . 3 ⊢ (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑈 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵)) → ([𝑈] ∼ = [𝐸] ∼ ↔ (𝐸 − 𝑈) ∈ 𝐼)) |
| 56 | 9, 36, 54, 19, 55 | syl22anc 838 | . 2 ⊢ (𝜑 → ([𝑈] ∼ = [𝐸] ∼ ↔ (𝐸 − 𝑈) ∈ 𝐼)) |
| 57 | 53, 56 | mpbird 257 | 1 ⊢ (𝜑 → [𝑈] ∼ = [𝐸] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 [cec 8646 Basecbs 17155 ↾s cress 17176 +gcplusg 17196 .rcmulr 17197 /s cqus 17444 Grpcgrp 18841 -gcsg 18843 SubGrpcsubg 19028 NrmSGrpcnsg 19029 ~QG cqg 19030 Abelcabl 19687 Rngcrng 20037 1rcur 20066 Ringcrg 20118 2Idealc2idl 21135 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-ec 8650 df-qs 8654 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17380 df-imas 17447 df-qus 17448 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-nsg 19032 df-eqg 19033 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-subrng 20431 df-lss 20814 df-sra 21056 df-rgmod 21057 df-lidl 21094 df-2idl 21136 |
| This theorem is referenced by: rngqiprngfu 21203 |
| Copyright terms: Public domain | W3C validator |