MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngfulem4 Structured version   Visualization version   GIF version

Theorem rngqiprngfulem4 21347
Description: Lemma 4 for rngqiprngfu 21350. (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
Assertion
Ref Expression
rngqiprngfulem4 (𝜑 → [𝑈] = [𝐸] )

Proof of Theorem rngqiprngfulem4
StepHypRef Expression
1 rngqiprngfu.n . . . . . 6 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
21oveq2i 7459 . . . . 5 (𝐸 𝑈) = (𝐸 ((𝐸 ( 1 · 𝐸)) + 1 ))
32a1i 11 . . . 4 (𝜑 → (𝐸 𝑈) = (𝐸 ((𝐸 ( 1 · 𝐸)) + 1 )))
4 rngqiprngfu.b . . . . 5 𝐵 = (Base‘𝑅)
5 rngqiprngfu.a . . . . 5 + = (+g𝑅)
6 rngqiprngfu.m . . . . 5 = (-g𝑅)
7 rngqiprngfu.r . . . . . 6 (𝜑𝑅 ∈ Rng)
8 rngabl 20182 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
97, 8syl 17 . . . . 5 (𝜑𝑅 ∈ Abel)
10 rngqiprngfu.i . . . . . 6 (𝜑𝐼 ∈ (2Ideal‘𝑅))
11 rngqiprngfu.j . . . . . 6 𝐽 = (𝑅s 𝐼)
12 rngqiprngfu.u . . . . . 6 (𝜑𝐽 ∈ Ring)
13 rngqiprngfu.t . . . . . 6 · = (.r𝑅)
14 rngqiprngfu.1 . . . . . 6 1 = (1r𝐽)
15 rngqiprngfu.g . . . . . 6 = (𝑅 ~QG 𝐼)
16 rngqiprngfu.q . . . . . 6 𝑄 = (𝑅 /s )
17 rngqiprngfu.v . . . . . 6 (𝜑𝑄 ∈ Ring)
18 rngqiprngfu.e . . . . . 6 (𝜑𝐸 ∈ (1r𝑄))
197, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18rngqiprngfulem2 21345 . . . . 5 (𝜑𝐸𝐵)
20 rnggrp 20185 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
217, 20syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
227, 10, 11, 12, 4, 13, 14rngqiprng1elbas 21319 . . . . . . 7 (𝜑1𝐵)
234, 13rngcl 20191 . . . . . . 7 ((𝑅 ∈ Rng ∧ 1𝐵𝐸𝐵) → ( 1 · 𝐸) ∈ 𝐵)
247, 22, 19, 23syl3anc 1371 . . . . . 6 (𝜑 → ( 1 · 𝐸) ∈ 𝐵)
254, 6grpsubcl 19060 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐸𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 ( 1 · 𝐸)) ∈ 𝐵)
2621, 19, 24, 25syl3anc 1371 . . . . 5 (𝜑 → (𝐸 ( 1 · 𝐸)) ∈ 𝐵)
274, 5, 6, 9, 19, 26, 22ablsubsub4 19860 . . . 4 (𝜑 → ((𝐸 (𝐸 ( 1 · 𝐸))) 1 ) = (𝐸 ((𝐸 ( 1 · 𝐸)) + 1 )))
284, 6, 9, 19, 24ablnncan 19862 . . . . 5 (𝜑 → (𝐸 (𝐸 ( 1 · 𝐸))) = ( 1 · 𝐸))
2928oveq1d 7463 . . . 4 (𝜑 → ((𝐸 (𝐸 ( 1 · 𝐸))) 1 ) = (( 1 · 𝐸) 1 ))
303, 27, 293eqtr2d 2786 . . 3 (𝜑 → (𝐸 𝑈) = (( 1 · 𝐸) 1 ))
31 ringrng 20308 . . . . . . . . . 10 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
3212, 31syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ Rng)
3311, 32eqeltrrid 2849 . . . . . . . 8 (𝜑 → (𝑅s 𝐼) ∈ Rng)
347, 10, 33rng2idlnsg 21299 . . . . . . 7 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
35 nsgsubg 19198 . . . . . . 7 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
3634, 35syl 17 . . . . . 6 (𝜑𝐼 ∈ (SubGrp‘𝑅))
377, 10, 11, 12, 4, 13, 14rngqiprngghmlem1 21320 . . . . . . . 8 ((𝜑𝐸𝐵) → ( 1 · 𝐸) ∈ (Base‘𝐽))
3819, 37mpdan 686 . . . . . . 7 (𝜑 → ( 1 · 𝐸) ∈ (Base‘𝐽))
39 eqid 2740 . . . . . . . 8 (Base‘𝐽) = (Base‘𝐽)
4010, 11, 392idlbas 21296 . . . . . . 7 (𝜑 → (Base‘𝐽) = 𝐼)
4138, 40eleqtrd 2846 . . . . . 6 (𝜑 → ( 1 · 𝐸) ∈ 𝐼)
4239, 14ringidcl 20289 . . . . . . . 8 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
4312, 42syl 17 . . . . . . 7 (𝜑1 ∈ (Base‘𝐽))
4443, 40eleqtrd 2846 . . . . . 6 (𝜑1𝐼)
45 eqid 2740 . . . . . . 7 (-g𝐽) = (-g𝐽)
466, 11, 45subgsub 19178 . . . . . 6 ((𝐼 ∈ (SubGrp‘𝑅) ∧ ( 1 · 𝐸) ∈ 𝐼1𝐼) → (( 1 · 𝐸) 1 ) = (( 1 · 𝐸)(-g𝐽) 1 ))
4736, 41, 44, 46syl3anc 1371 . . . . 5 (𝜑 → (( 1 · 𝐸) 1 ) = (( 1 · 𝐸)(-g𝐽) 1 ))
4812ringgrpd 20269 . . . . . 6 (𝜑𝐽 ∈ Grp)
4939, 45grpsubcl 19060 . . . . . 6 ((𝐽 ∈ Grp ∧ ( 1 · 𝐸) ∈ (Base‘𝐽) ∧ 1 ∈ (Base‘𝐽)) → (( 1 · 𝐸)(-g𝐽) 1 ) ∈ (Base‘𝐽))
5048, 38, 43, 49syl3anc 1371 . . . . 5 (𝜑 → (( 1 · 𝐸)(-g𝐽) 1 ) ∈ (Base‘𝐽))
5147, 50eqeltrd 2844 . . . 4 (𝜑 → (( 1 · 𝐸) 1 ) ∈ (Base‘𝐽))
5251, 40eleqtrd 2846 . . 3 (𝜑 → (( 1 · 𝐸) 1 ) ∈ 𝐼)
5330, 52eqeltrd 2844 . 2 (𝜑 → (𝐸 𝑈) ∈ 𝐼)
547, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18, 6, 5, 1rngqiprngfulem3 21346 . . 3 (𝜑𝑈𝐵)
554, 6, 15qusecsub 19877 . . 3 (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑈𝐵𝐸𝐵)) → ([𝑈] = [𝐸] ↔ (𝐸 𝑈) ∈ 𝐼))
569, 36, 54, 19, 55syl22anc 838 . 2 (𝜑 → ([𝑈] = [𝐸] ↔ (𝐸 𝑈) ∈ 𝐼))
5753, 56mpbird 257 1 (𝜑 → [𝑈] = [𝐸] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  cfv 6573  (class class class)co 7448  [cec 8761  Basecbs 17258  s cress 17287  +gcplusg 17311  .rcmulr 17312   /s cqus 17565  Grpcgrp 18973  -gcsg 18975  SubGrpcsubg 19160  NrmSGrpcnsg 19161   ~QG cqg 19162  Abelcabl 19823  Rngcrng 20179  1rcur 20208  Ringcrg 20260  2Idealc2idl 21282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-nsg 19164  df-eqg 19165  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-subrng 20572  df-lss 20953  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-2idl 21283
This theorem is referenced by:  rngqiprngfu  21350
  Copyright terms: Public domain W3C validator