Step | Hyp | Ref
| Expression |
1 | | rngqiprngfu.n |
. . . . . 6
β’ π = ((πΈ β ( 1 Β· πΈ)) + 1 ) |
2 | 1 | oveq2i 7420 |
. . . . 5
β’ (πΈ β π) = (πΈ β ((πΈ β ( 1 Β· πΈ)) + 1 )) |
3 | 2 | a1i 11 |
. . . 4
β’ (π β (πΈ β π) = (πΈ β ((πΈ β ( 1 Β· πΈ)) + 1 ))) |
4 | | rngqiprngfu.b |
. . . . 5
β’ π΅ = (Baseβπ
) |
5 | | rngqiprngfu.a |
. . . . 5
β’ + =
(+gβπ
) |
6 | | rngqiprngfu.m |
. . . . 5
β’ β =
(-gβπ
) |
7 | | rngqiprngfu.r |
. . . . . 6
β’ (π β π
β Rng) |
8 | | rngabl 46651 |
. . . . . 6
β’ (π
β Rng β π
β Abel) |
9 | 7, 8 | syl 17 |
. . . . 5
β’ (π β π
β Abel) |
10 | | rngqiprngfu.i |
. . . . . 6
β’ (π β πΌ β (2Idealβπ
)) |
11 | | rngqiprngfu.j |
. . . . . 6
β’ π½ = (π
βΎs πΌ) |
12 | | rngqiprngfu.u |
. . . . . 6
β’ (π β π½ β Ring) |
13 | | rngqiprngfu.t |
. . . . . 6
β’ Β· =
(.rβπ
) |
14 | | rngqiprngfu.1 |
. . . . . 6
β’ 1 =
(1rβπ½) |
15 | | rngqiprngfu.g |
. . . . . 6
β’ βΌ =
(π
~QG
πΌ) |
16 | | rngqiprngfu.q |
. . . . . 6
β’ π = (π
/s βΌ ) |
17 | | rngqiprngfu.v |
. . . . . 6
β’ (π β π β Ring) |
18 | | rngqiprngfu.e |
. . . . . 6
β’ (π β πΈ β (1rβπ)) |
19 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18 | rngqiprngfulem2 46797 |
. . . . 5
β’ (π β πΈ β π΅) |
20 | | rnggrp 46654 |
. . . . . . 7
β’ (π
β Rng β π
β Grp) |
21 | 7, 20 | syl 17 |
. . . . . 6
β’ (π β π
β Grp) |
22 | 7, 10, 11, 12, 4, 13, 14 | rngqiprng1elbas 46771 |
. . . . . . 7
β’ (π β 1 β π΅) |
23 | 4, 13 | rngcl 46663 |
. . . . . . 7
β’ ((π
β Rng β§ 1 β π΅ β§ πΈ β π΅) β ( 1 Β· πΈ) β π΅) |
24 | 7, 22, 19, 23 | syl3anc 1372 |
. . . . . 6
β’ (π β ( 1 Β· πΈ) β π΅) |
25 | 4, 6 | grpsubcl 18903 |
. . . . . 6
β’ ((π
β Grp β§ πΈ β π΅ β§ ( 1 Β· πΈ) β π΅) β (πΈ β ( 1 Β· πΈ)) β π΅) |
26 | 21, 19, 24, 25 | syl3anc 1372 |
. . . . 5
β’ (π β (πΈ β ( 1 Β· πΈ)) β π΅) |
27 | 4, 5, 6, 9, 19, 26, 22 | ablsubsub4 19686 |
. . . 4
β’ (π β ((πΈ β (πΈ β ( 1 Β· πΈ))) β 1 ) = (πΈ β ((πΈ β ( 1 Β· πΈ)) + 1 ))) |
28 | 4, 6, 9, 19, 24 | ablnncan 19688 |
. . . . 5
β’ (π β (πΈ β (πΈ β ( 1 Β· πΈ))) = ( 1 Β· πΈ)) |
29 | 28 | oveq1d 7424 |
. . . 4
β’ (π β ((πΈ β (πΈ β ( 1 Β· πΈ))) β 1 ) = (( 1 Β· πΈ) β 1 )) |
30 | 3, 27, 29 | 3eqtr2d 2779 |
. . 3
β’ (π β (πΈ β π) = (( 1 Β· πΈ) β 1 )) |
31 | | ringrng 46655 |
. . . . . . . . . 10
β’ (π½ β Ring β π½ β Rng) |
32 | 12, 31 | syl 17 |
. . . . . . . . 9
β’ (π β π½ β Rng) |
33 | 11, 32 | eqeltrrid 2839 |
. . . . . . . 8
β’ (π β (π
βΎs πΌ) β Rng) |
34 | 7, 10, 33 | rng2idlnsg 46761 |
. . . . . . 7
β’ (π β πΌ β (NrmSGrpβπ
)) |
35 | | nsgsubg 19038 |
. . . . . . 7
β’ (πΌ β (NrmSGrpβπ
) β πΌ β (SubGrpβπ
)) |
36 | 34, 35 | syl 17 |
. . . . . 6
β’ (π β πΌ β (SubGrpβπ
)) |
37 | 7, 10, 11, 12, 4, 13, 14 | rngqiprngghmlem1 46772 |
. . . . . . . 8
β’ ((π β§ πΈ β π΅) β ( 1 Β· πΈ) β (Baseβπ½)) |
38 | 19, 37 | mpdan 686 |
. . . . . . 7
β’ (π β ( 1 Β· πΈ) β (Baseβπ½)) |
39 | | eqid 2733 |
. . . . . . . 8
β’
(Baseβπ½) =
(Baseβπ½) |
40 | 10, 11, 39 | 2idlbas 20869 |
. . . . . . 7
β’ (π β (Baseβπ½) = πΌ) |
41 | 38, 40 | eleqtrd 2836 |
. . . . . 6
β’ (π β ( 1 Β· πΈ) β πΌ) |
42 | 39, 14 | ringidcl 20083 |
. . . . . . . 8
β’ (π½ β Ring β 1 β
(Baseβπ½)) |
43 | 12, 42 | syl 17 |
. . . . . . 7
β’ (π β 1 β (Baseβπ½)) |
44 | 43, 40 | eleqtrd 2836 |
. . . . . 6
β’ (π β 1 β πΌ) |
45 | | eqid 2733 |
. . . . . . 7
β’
(-gβπ½) = (-gβπ½) |
46 | 6, 11, 45 | subgsub 19018 |
. . . . . 6
β’ ((πΌ β (SubGrpβπ
) β§ ( 1 Β· πΈ) β πΌ β§ 1 β πΌ) β (( 1 Β· πΈ) β 1 ) = (( 1 Β· πΈ)(-gβπ½) 1 )) |
47 | 36, 41, 44, 46 | syl3anc 1372 |
. . . . 5
β’ (π β (( 1 Β· πΈ) β 1 ) = (( 1 Β· πΈ)(-gβπ½) 1 )) |
48 | 12 | ringgrpd 20065 |
. . . . . 6
β’ (π β π½ β Grp) |
49 | 39, 45 | grpsubcl 18903 |
. . . . . 6
β’ ((π½ β Grp β§ ( 1 Β· πΈ) β (Baseβπ½) β§ 1 β (Baseβπ½)) β (( 1 Β· πΈ)(-gβπ½) 1 ) β (Baseβπ½)) |
50 | 48, 38, 43, 49 | syl3anc 1372 |
. . . . 5
β’ (π β (( 1 Β· πΈ)(-gβπ½) 1 ) β (Baseβπ½)) |
51 | 47, 50 | eqeltrd 2834 |
. . . 4
β’ (π β (( 1 Β· πΈ) β 1 ) β (Baseβπ½)) |
52 | 51, 40 | eleqtrd 2836 |
. . 3
β’ (π β (( 1 Β· πΈ) β 1 ) β πΌ) |
53 | 30, 52 | eqeltrd 2834 |
. 2
β’ (π β (πΈ β π) β πΌ) |
54 | 7, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18, 6, 5, 1 | rngqiprngfulem3 46798 |
. . 3
β’ (π β π β π΅) |
55 | 4, 6, 15 | qusecsub 19703 |
. . 3
β’ (((π
β Abel β§ πΌ β (SubGrpβπ
)) β§ (π β π΅ β§ πΈ β π΅)) β ([π] βΌ = [πΈ] βΌ β (πΈ β π) β πΌ)) |
56 | 9, 36, 54, 19, 55 | syl22anc 838 |
. 2
β’ (π β ([π] βΌ = [πΈ] βΌ β (πΈ β π) β πΌ)) |
57 | 53, 56 | mpbird 257 |
1
β’ (π β [π] βΌ = [πΈ] βΌ ) |