MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngfulem4 Structured version   Visualization version   GIF version

Theorem rngqiprngfulem4 21324
Description: Lemma 4 for rngqiprngfu 21327. (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
rngqiprngfu.m = (-g𝑅)
rngqiprngfu.a + = (+g𝑅)
rngqiprngfu.n 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
Assertion
Ref Expression
rngqiprngfulem4 (𝜑 → [𝑈] = [𝐸] )

Proof of Theorem rngqiprngfulem4
StepHypRef Expression
1 rngqiprngfu.n . . . . . 6 𝑈 = ((𝐸 ( 1 · 𝐸)) + 1 )
21oveq2i 7442 . . . . 5 (𝐸 𝑈) = (𝐸 ((𝐸 ( 1 · 𝐸)) + 1 ))
32a1i 11 . . . 4 (𝜑 → (𝐸 𝑈) = (𝐸 ((𝐸 ( 1 · 𝐸)) + 1 )))
4 rngqiprngfu.b . . . . 5 𝐵 = (Base‘𝑅)
5 rngqiprngfu.a . . . . 5 + = (+g𝑅)
6 rngqiprngfu.m . . . . 5 = (-g𝑅)
7 rngqiprngfu.r . . . . . 6 (𝜑𝑅 ∈ Rng)
8 rngabl 20152 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
97, 8syl 17 . . . . 5 (𝜑𝑅 ∈ Abel)
10 rngqiprngfu.i . . . . . 6 (𝜑𝐼 ∈ (2Ideal‘𝑅))
11 rngqiprngfu.j . . . . . 6 𝐽 = (𝑅s 𝐼)
12 rngqiprngfu.u . . . . . 6 (𝜑𝐽 ∈ Ring)
13 rngqiprngfu.t . . . . . 6 · = (.r𝑅)
14 rngqiprngfu.1 . . . . . 6 1 = (1r𝐽)
15 rngqiprngfu.g . . . . . 6 = (𝑅 ~QG 𝐼)
16 rngqiprngfu.q . . . . . 6 𝑄 = (𝑅 /s )
17 rngqiprngfu.v . . . . . 6 (𝜑𝑄 ∈ Ring)
18 rngqiprngfu.e . . . . . 6 (𝜑𝐸 ∈ (1r𝑄))
197, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18rngqiprngfulem2 21322 . . . . 5 (𝜑𝐸𝐵)
20 rnggrp 20155 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
217, 20syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
227, 10, 11, 12, 4, 13, 14rngqiprng1elbas 21296 . . . . . . 7 (𝜑1𝐵)
234, 13rngcl 20161 . . . . . . 7 ((𝑅 ∈ Rng ∧ 1𝐵𝐸𝐵) → ( 1 · 𝐸) ∈ 𝐵)
247, 22, 19, 23syl3anc 1373 . . . . . 6 (𝜑 → ( 1 · 𝐸) ∈ 𝐵)
254, 6grpsubcl 19038 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐸𝐵 ∧ ( 1 · 𝐸) ∈ 𝐵) → (𝐸 ( 1 · 𝐸)) ∈ 𝐵)
2621, 19, 24, 25syl3anc 1373 . . . . 5 (𝜑 → (𝐸 ( 1 · 𝐸)) ∈ 𝐵)
274, 5, 6, 9, 19, 26, 22ablsubsub4 19836 . . . 4 (𝜑 → ((𝐸 (𝐸 ( 1 · 𝐸))) 1 ) = (𝐸 ((𝐸 ( 1 · 𝐸)) + 1 )))
284, 6, 9, 19, 24ablnncan 19838 . . . . 5 (𝜑 → (𝐸 (𝐸 ( 1 · 𝐸))) = ( 1 · 𝐸))
2928oveq1d 7446 . . . 4 (𝜑 → ((𝐸 (𝐸 ( 1 · 𝐸))) 1 ) = (( 1 · 𝐸) 1 ))
303, 27, 293eqtr2d 2783 . . 3 (𝜑 → (𝐸 𝑈) = (( 1 · 𝐸) 1 ))
31 ringrng 20282 . . . . . . . . . 10 (𝐽 ∈ Ring → 𝐽 ∈ Rng)
3212, 31syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ Rng)
3311, 32eqeltrrid 2846 . . . . . . . 8 (𝜑 → (𝑅s 𝐼) ∈ Rng)
347, 10, 33rng2idlnsg 21276 . . . . . . 7 (𝜑𝐼 ∈ (NrmSGrp‘𝑅))
35 nsgsubg 19176 . . . . . . 7 (𝐼 ∈ (NrmSGrp‘𝑅) → 𝐼 ∈ (SubGrp‘𝑅))
3634, 35syl 17 . . . . . 6 (𝜑𝐼 ∈ (SubGrp‘𝑅))
377, 10, 11, 12, 4, 13, 14rngqiprngghmlem1 21297 . . . . . . . 8 ((𝜑𝐸𝐵) → ( 1 · 𝐸) ∈ (Base‘𝐽))
3819, 37mpdan 687 . . . . . . 7 (𝜑 → ( 1 · 𝐸) ∈ (Base‘𝐽))
39 eqid 2737 . . . . . . . 8 (Base‘𝐽) = (Base‘𝐽)
4010, 11, 392idlbas 21273 . . . . . . 7 (𝜑 → (Base‘𝐽) = 𝐼)
4138, 40eleqtrd 2843 . . . . . 6 (𝜑 → ( 1 · 𝐸) ∈ 𝐼)
4239, 14ringidcl 20262 . . . . . . . 8 (𝐽 ∈ Ring → 1 ∈ (Base‘𝐽))
4312, 42syl 17 . . . . . . 7 (𝜑1 ∈ (Base‘𝐽))
4443, 40eleqtrd 2843 . . . . . 6 (𝜑1𝐼)
45 eqid 2737 . . . . . . 7 (-g𝐽) = (-g𝐽)
466, 11, 45subgsub 19156 . . . . . 6 ((𝐼 ∈ (SubGrp‘𝑅) ∧ ( 1 · 𝐸) ∈ 𝐼1𝐼) → (( 1 · 𝐸) 1 ) = (( 1 · 𝐸)(-g𝐽) 1 ))
4736, 41, 44, 46syl3anc 1373 . . . . 5 (𝜑 → (( 1 · 𝐸) 1 ) = (( 1 · 𝐸)(-g𝐽) 1 ))
4812ringgrpd 20239 . . . . . 6 (𝜑𝐽 ∈ Grp)
4939, 45grpsubcl 19038 . . . . . 6 ((𝐽 ∈ Grp ∧ ( 1 · 𝐸) ∈ (Base‘𝐽) ∧ 1 ∈ (Base‘𝐽)) → (( 1 · 𝐸)(-g𝐽) 1 ) ∈ (Base‘𝐽))
5048, 38, 43, 49syl3anc 1373 . . . . 5 (𝜑 → (( 1 · 𝐸)(-g𝐽) 1 ) ∈ (Base‘𝐽))
5147, 50eqeltrd 2841 . . . 4 (𝜑 → (( 1 · 𝐸) 1 ) ∈ (Base‘𝐽))
5251, 40eleqtrd 2843 . . 3 (𝜑 → (( 1 · 𝐸) 1 ) ∈ 𝐼)
5330, 52eqeltrd 2841 . 2 (𝜑 → (𝐸 𝑈) ∈ 𝐼)
547, 10, 11, 12, 4, 13, 14, 15, 16, 17, 18, 6, 5, 1rngqiprngfulem3 21323 . . 3 (𝜑𝑈𝐵)
554, 6, 15qusecsub 19853 . . 3 (((𝑅 ∈ Abel ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑈𝐵𝐸𝐵)) → ([𝑈] = [𝐸] ↔ (𝐸 𝑈) ∈ 𝐼))
569, 36, 54, 19, 55syl22anc 839 . 2 (𝜑 → ([𝑈] = [𝐸] ↔ (𝐸 𝑈) ∈ 𝐼))
5753, 56mpbird 257 1 (𝜑 → [𝑈] = [𝐸] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  cfv 6561  (class class class)co 7431  [cec 8743  Basecbs 17247  s cress 17274  +gcplusg 17297  .rcmulr 17298   /s cqus 17550  Grpcgrp 18951  -gcsg 18953  SubGrpcsubg 19138  NrmSGrpcnsg 19139   ~QG cqg 19140  Abelcabl 19799  Rngcrng 20149  1rcur 20178  Ringcrg 20230  2Idealc2idl 21259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-ec 8747  df-qs 8751  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-0g 17486  df-imas 17553  df-qus 17554  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-nsg 19142  df-eqg 19143  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-subrng 20546  df-lss 20930  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-2idl 21260
This theorem is referenced by:  rngqiprngfu  21327
  Copyright terms: Public domain W3C validator