MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngansg Structured version   Visualization version   GIF version

Theorem rngansg 20088
Description: Every additive subgroup of a non-unital ring is normal. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
rngansg (𝑅 ∈ Rng → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))

Proof of Theorem rngansg
StepHypRef Expression
1 rngabl 20073 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
2 ablnsg 19759 . 2 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
31, 2syl 17 1 (𝑅 ∈ Rng → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cfv 6481  SubGrpcsubg 19033  NrmSGrpcnsg 19034  Abelcabl 19693  Rngcrng 20070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-subg 19036  df-nsg 19037  df-cmn 19694  df-abl 19695  df-rng 20071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator