Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngansg Structured version   Visualization version   GIF version

Theorem rngansg 46655
Description: Every additive subgroup of a non-unital ring is normal. (Contributed by AV, 25-Feb-2025.)
Assertion
Ref Expression
rngansg (𝑅 ∈ Rng → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))

Proof of Theorem rngansg
StepHypRef Expression
1 rngabl 46637 . 2 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
2 ablnsg 19709 . 2 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
31, 2syl 17 1 (𝑅 ∈ Rng → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  cfv 6540  SubGrpcsubg 18994  NrmSGrpcnsg 18995  Abelcabl 19643  Rngcrng 46634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-subg 18997  df-nsg 18998  df-cmn 19644  df-abl 19645  df-rng 46635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator