| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for rngqiprngfu 21227 (and lemma for rngqiprngu 21228). (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| Ref | Expression |
|---|---|
| rngqiprngfulem2 | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngfu.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rngqiprngfu.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 3 | rngqiprngfu.j | . . 3 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 4 | rngqiprngfu.u | . . 3 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 5 | rngqiprngfu.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | rngqiprngfu.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 7 | rngqiprngfu.1 | . . 3 ⊢ 1 = (1r‘𝐽) | |
| 8 | rngqiprngfu.g | . . 3 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 9 | rngqiprngfu.q | . . 3 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 10 | rngqiprngfu.v | . . 3 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | rngqiprngfulem1 21221 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ ) |
| 12 | rngqiprngfu.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ (1r‘𝑄)) |
| 14 | eleq2 2817 | . . . . . . 7 ⊢ ((1r‘𝑄) = [𝑥] ∼ → (𝐸 ∈ (1r‘𝑄) ↔ 𝐸 ∈ [𝑥] ∼ )) | |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ (1r‘𝑄) ↔ 𝐸 ∈ [𝑥] ∼ )) |
| 16 | elecg 8715 | . . . . . . . . 9 ⊢ ((𝐸 ∈ (1r‘𝑄) ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ ↔ 𝑥 ∼ 𝐸)) | |
| 17 | 12, 16 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ ↔ 𝑥 ∼ 𝐸)) |
| 18 | rngabl 20064 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 19 | 1, 18 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ Abel) |
| 20 | eqid 2729 | . . . . . . . . . . . . . 14 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 21 | 5, 20 | 2idlss 21172 | . . . . . . . . . . . . 13 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ⊆ 𝐵) |
| 22 | 2, 21 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| 23 | 19, 22 | jca 511 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵)) |
| 24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵)) |
| 25 | eqid 2729 | . . . . . . . . . . 11 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 26 | 5, 25, 8 | eqgabl 19764 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵) → (𝑥 ∼ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ (𝐸(-g‘𝑅)𝑥) ∈ 𝐼))) |
| 27 | 24, 26 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∼ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ (𝐸(-g‘𝑅)𝑥) ∈ 𝐼))) |
| 28 | simp2 1137 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ (𝐸(-g‘𝑅)𝑥) ∈ 𝐼) → 𝐸 ∈ 𝐵) | |
| 29 | 27, 28 | biimtrdi 253 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∼ 𝐸 → 𝐸 ∈ 𝐵)) |
| 30 | 17, 29 | sylbid 240 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 32 | 15, 31 | sylbid 240 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ (1r‘𝑄) → 𝐸 ∈ 𝐵)) |
| 33 | 32 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑄) = [𝑥] ∼ → (𝐸 ∈ (1r‘𝑄) → 𝐸 ∈ 𝐵))) |
| 34 | 13, 33 | mpid 44 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑄) = [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 35 | 34 | rexlimdva 3134 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 36 | 11, 35 | mpd 15 | 1 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 [cec 8669 Basecbs 17179 ↾s cress 17200 .rcmulr 17221 /s cqus 17468 -gcsg 18867 ~QG cqg 19054 Abelcabl 19711 Rngcrng 20061 1rcur 20090 Ringcrg 20142 2Idealc2idl 21159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-ec 8673 df-qs 8677 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-0g 17404 df-imas 17471 df-qus 17472 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-eqg 19057 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-lss 20838 df-sra 21080 df-rgmod 21081 df-lidl 21118 df-2idl 21160 |
| This theorem is referenced by: rngqiprngfulem3 21223 rngqiprngfulem4 21224 rngqiprngfulem5 21225 |
| Copyright terms: Public domain | W3C validator |