MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngqiprngfulem2 Structured version   Visualization version   GIF version

Theorem rngqiprngfulem2 21244
Description: Lemma 2 for rngqiprngfu 21249 (and lemma for rngqiprngu 21250). (Contributed by AV, 16-Mar-2025.)
Hypotheses
Ref Expression
rngqiprngfu.r (𝜑𝑅 ∈ Rng)
rngqiprngfu.i (𝜑𝐼 ∈ (2Ideal‘𝑅))
rngqiprngfu.j 𝐽 = (𝑅s 𝐼)
rngqiprngfu.u (𝜑𝐽 ∈ Ring)
rngqiprngfu.b 𝐵 = (Base‘𝑅)
rngqiprngfu.t · = (.r𝑅)
rngqiprngfu.1 1 = (1r𝐽)
rngqiprngfu.g = (𝑅 ~QG 𝐼)
rngqiprngfu.q 𝑄 = (𝑅 /s )
rngqiprngfu.v (𝜑𝑄 ∈ Ring)
rngqiprngfu.e (𝜑𝐸 ∈ (1r𝑄))
Assertion
Ref Expression
rngqiprngfulem2 (𝜑𝐸𝐵)

Proof of Theorem rngqiprngfulem2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rngqiprngfu.r . . 3 (𝜑𝑅 ∈ Rng)
2 rngqiprngfu.i . . 3 (𝜑𝐼 ∈ (2Ideal‘𝑅))
3 rngqiprngfu.j . . 3 𝐽 = (𝑅s 𝐼)
4 rngqiprngfu.u . . 3 (𝜑𝐽 ∈ Ring)
5 rngqiprngfu.b . . 3 𝐵 = (Base‘𝑅)
6 rngqiprngfu.t . . 3 · = (.r𝑅)
7 rngqiprngfu.1 . . 3 1 = (1r𝐽)
8 rngqiprngfu.g . . 3 = (𝑅 ~QG 𝐼)
9 rngqiprngfu.q . . 3 𝑄 = (𝑅 /s )
10 rngqiprngfu.v . . 3 (𝜑𝑄 ∈ Ring)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10rngqiprngfulem1 21243 . 2 (𝜑 → ∃𝑥𝐵 (1r𝑄) = [𝑥] )
12 rngqiprngfu.e . . . . 5 (𝜑𝐸 ∈ (1r𝑄))
1312adantr 480 . . . 4 ((𝜑𝑥𝐵) → 𝐸 ∈ (1r𝑄))
14 eleq2 2820 . . . . . . 7 ((1r𝑄) = [𝑥] → (𝐸 ∈ (1r𝑄) ↔ 𝐸 ∈ [𝑥] ))
1514adantl 481 . . . . . 6 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ (1r𝑄) ↔ 𝐸 ∈ [𝑥] ))
16 elecg 8661 . . . . . . . . 9 ((𝐸 ∈ (1r𝑄) ∧ 𝑥𝐵) → (𝐸 ∈ [𝑥] 𝑥 𝐸))
1712, 16sylan 580 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝐸 ∈ [𝑥] 𝑥 𝐸))
18 rngabl 20068 . . . . . . . . . . . . 13 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
191, 18syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Abel)
20 eqid 2731 . . . . . . . . . . . . . 14 (2Ideal‘𝑅) = (2Ideal‘𝑅)
215, 202idlss 21194 . . . . . . . . . . . . 13 (𝐼 ∈ (2Ideal‘𝑅) → 𝐼𝐵)
222, 21syl 17 . . . . . . . . . . . 12 (𝜑𝐼𝐵)
2319, 22jca 511 . . . . . . . . . . 11 (𝜑 → (𝑅 ∈ Abel ∧ 𝐼𝐵))
2423adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝐵) → (𝑅 ∈ Abel ∧ 𝐼𝐵))
25 eqid 2731 . . . . . . . . . . 11 (-g𝑅) = (-g𝑅)
265, 25, 8eqgabl 19741 . . . . . . . . . 10 ((𝑅 ∈ Abel ∧ 𝐼𝐵) → (𝑥 𝐸 ↔ (𝑥𝐵𝐸𝐵 ∧ (𝐸(-g𝑅)𝑥) ∈ 𝐼)))
2724, 26syl 17 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑥 𝐸 ↔ (𝑥𝐵𝐸𝐵 ∧ (𝐸(-g𝑅)𝑥) ∈ 𝐼)))
28 simp2 1137 . . . . . . . . 9 ((𝑥𝐵𝐸𝐵 ∧ (𝐸(-g𝑅)𝑥) ∈ 𝐼) → 𝐸𝐵)
2927, 28biimtrdi 253 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑥 𝐸𝐸𝐵))
3017, 29sylbid 240 . . . . . . 7 ((𝜑𝑥𝐵) → (𝐸 ∈ [𝑥] 𝐸𝐵))
3130adantr 480 . . . . . 6 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ [𝑥] 𝐸𝐵))
3215, 31sylbid 240 . . . . 5 (((𝜑𝑥𝐵) ∧ (1r𝑄) = [𝑥] ) → (𝐸 ∈ (1r𝑄) → 𝐸𝐵))
3332ex 412 . . . 4 ((𝜑𝑥𝐵) → ((1r𝑄) = [𝑥] → (𝐸 ∈ (1r𝑄) → 𝐸𝐵)))
3413, 33mpid 44 . . 3 ((𝜑𝑥𝐵) → ((1r𝑄) = [𝑥] 𝐸𝐵))
3534rexlimdva 3133 . 2 (𝜑 → (∃𝑥𝐵 (1r𝑄) = [𝑥] 𝐸𝐵))
3611, 35mpd 15 1 (𝜑𝐸𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wrex 3056  wss 3897   class class class wbr 5086  cfv 6476  (class class class)co 7341  [cec 8615  Basecbs 17115  s cress 17136  .rcmulr 17157   /s cqus 17404  -gcsg 18843   ~QG cqg 19030  Abelcabl 19688  Rngcrng 20065  1rcur 20094  Ringcrg 20146  2Idealc2idl 21181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-ec 8619  df-qs 8623  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-0g 17340  df-imas 17407  df-qus 17408  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-eqg 19033  df-cmn 19689  df-abl 19690  df-mgp 20054  df-rng 20066  df-ur 20095  df-ring 20148  df-lss 20860  df-sra 21102  df-rgmod 21103  df-lidl 21140  df-2idl 21182
This theorem is referenced by:  rngqiprngfulem3  21245  rngqiprngfulem4  21246  rngqiprngfulem5  21247
  Copyright terms: Public domain W3C validator