| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for rngqiprngfu 21249 (and lemma for rngqiprngu 21250). (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| Ref | Expression |
|---|---|
| rngqiprngfulem2 | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngfu.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rngqiprngfu.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 3 | rngqiprngfu.j | . . 3 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 4 | rngqiprngfu.u | . . 3 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 5 | rngqiprngfu.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | rngqiprngfu.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 7 | rngqiprngfu.1 | . . 3 ⊢ 1 = (1r‘𝐽) | |
| 8 | rngqiprngfu.g | . . 3 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 9 | rngqiprngfu.q | . . 3 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 10 | rngqiprngfu.v | . . 3 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | rngqiprngfulem1 21243 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ ) |
| 12 | rngqiprngfu.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ (1r‘𝑄)) |
| 14 | eleq2 2820 | . . . . . . 7 ⊢ ((1r‘𝑄) = [𝑥] ∼ → (𝐸 ∈ (1r‘𝑄) ↔ 𝐸 ∈ [𝑥] ∼ )) | |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ (1r‘𝑄) ↔ 𝐸 ∈ [𝑥] ∼ )) |
| 16 | elecg 8661 | . . . . . . . . 9 ⊢ ((𝐸 ∈ (1r‘𝑄) ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ ↔ 𝑥 ∼ 𝐸)) | |
| 17 | 12, 16 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ ↔ 𝑥 ∼ 𝐸)) |
| 18 | rngabl 20068 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 19 | 1, 18 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ Abel) |
| 20 | eqid 2731 | . . . . . . . . . . . . . 14 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 21 | 5, 20 | 2idlss 21194 | . . . . . . . . . . . . 13 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ⊆ 𝐵) |
| 22 | 2, 21 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| 23 | 19, 22 | jca 511 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵)) |
| 24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵)) |
| 25 | eqid 2731 | . . . . . . . . . . 11 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 26 | 5, 25, 8 | eqgabl 19741 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵) → (𝑥 ∼ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ (𝐸(-g‘𝑅)𝑥) ∈ 𝐼))) |
| 27 | 24, 26 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∼ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ (𝐸(-g‘𝑅)𝑥) ∈ 𝐼))) |
| 28 | simp2 1137 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ (𝐸(-g‘𝑅)𝑥) ∈ 𝐼) → 𝐸 ∈ 𝐵) | |
| 29 | 27, 28 | biimtrdi 253 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∼ 𝐸 → 𝐸 ∈ 𝐵)) |
| 30 | 17, 29 | sylbid 240 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 32 | 15, 31 | sylbid 240 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ (1r‘𝑄) → 𝐸 ∈ 𝐵)) |
| 33 | 32 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑄) = [𝑥] ∼ → (𝐸 ∈ (1r‘𝑄) → 𝐸 ∈ 𝐵))) |
| 34 | 13, 33 | mpid 44 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑄) = [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 35 | 34 | rexlimdva 3133 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 36 | 11, 35 | mpd 15 | 1 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ⊆ wss 3897 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 [cec 8615 Basecbs 17115 ↾s cress 17136 .rcmulr 17157 /s cqus 17404 -gcsg 18843 ~QG cqg 19030 Abelcabl 19688 Rngcrng 20065 1rcur 20094 Ringcrg 20146 2Idealc2idl 21181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-ec 8619 df-qs 8623 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-0g 17340 df-imas 17407 df-qus 17408 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-eqg 19033 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-lss 20860 df-sra 21102 df-rgmod 21103 df-lidl 21140 df-2idl 21182 |
| This theorem is referenced by: rngqiprngfulem3 21245 rngqiprngfulem4 21246 rngqiprngfulem5 21247 |
| Copyright terms: Public domain | W3C validator |