| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngqiprngfulem2 | Structured version Visualization version GIF version | ||
| Description: Lemma 2 for rngqiprngfu 21263 (and lemma for rngqiprngu 21264). (Contributed by AV, 16-Mar-2025.) |
| Ref | Expression |
|---|---|
| rngqiprngfu.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngqiprngfu.i | ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) |
| rngqiprngfu.j | ⊢ 𝐽 = (𝑅 ↾s 𝐼) |
| rngqiprngfu.u | ⊢ (𝜑 → 𝐽 ∈ Ring) |
| rngqiprngfu.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngqiprngfu.t | ⊢ · = (.r‘𝑅) |
| rngqiprngfu.1 | ⊢ 1 = (1r‘𝐽) |
| rngqiprngfu.g | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| rngqiprngfu.q | ⊢ 𝑄 = (𝑅 /s ∼ ) |
| rngqiprngfu.v | ⊢ (𝜑 → 𝑄 ∈ Ring) |
| rngqiprngfu.e | ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) |
| Ref | Expression |
|---|---|
| rngqiprngfulem2 | ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngqiprngfu.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rngqiprngfu.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ (2Ideal‘𝑅)) | |
| 3 | rngqiprngfu.j | . . 3 ⊢ 𝐽 = (𝑅 ↾s 𝐼) | |
| 4 | rngqiprngfu.u | . . 3 ⊢ (𝜑 → 𝐽 ∈ Ring) | |
| 5 | rngqiprngfu.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | rngqiprngfu.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 7 | rngqiprngfu.1 | . . 3 ⊢ 1 = (1r‘𝐽) | |
| 8 | rngqiprngfu.g | . . 3 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 9 | rngqiprngfu.q | . . 3 ⊢ 𝑄 = (𝑅 /s ∼ ) | |
| 10 | rngqiprngfu.v | . . 3 ⊢ (𝜑 → 𝑄 ∈ Ring) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | rngqiprngfulem1 21257 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ ) |
| 12 | rngqiprngfu.e | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ (1r‘𝑄)) | |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐸 ∈ (1r‘𝑄)) |
| 14 | eleq2 2822 | . . . . . . 7 ⊢ ((1r‘𝑄) = [𝑥] ∼ → (𝐸 ∈ (1r‘𝑄) ↔ 𝐸 ∈ [𝑥] ∼ )) | |
| 15 | 14 | adantl 481 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ (1r‘𝑄) ↔ 𝐸 ∈ [𝑥] ∼ )) |
| 16 | elecg 8675 | . . . . . . . . 9 ⊢ ((𝐸 ∈ (1r‘𝑄) ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ ↔ 𝑥 ∼ 𝐸)) | |
| 17 | 12, 16 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ ↔ 𝑥 ∼ 𝐸)) |
| 18 | rngabl 20081 | . . . . . . . . . . . . 13 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 19 | 1, 18 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝑅 ∈ Abel) |
| 20 | eqid 2733 | . . . . . . . . . . . . . 14 ⊢ (2Ideal‘𝑅) = (2Ideal‘𝑅) | |
| 21 | 5, 20 | 2idlss 21208 | . . . . . . . . . . . . 13 ⊢ (𝐼 ∈ (2Ideal‘𝑅) → 𝐼 ⊆ 𝐵) |
| 22 | 2, 21 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| 23 | 19, 22 | jca 511 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵)) |
| 24 | 23 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵)) |
| 25 | eqid 2733 | . . . . . . . . . . 11 ⊢ (-g‘𝑅) = (-g‘𝑅) | |
| 26 | 5, 25, 8 | eqgabl 19754 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Abel ∧ 𝐼 ⊆ 𝐵) → (𝑥 ∼ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ (𝐸(-g‘𝑅)𝑥) ∈ 𝐼))) |
| 27 | 24, 26 | syl 17 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∼ 𝐸 ↔ (𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ (𝐸(-g‘𝑅)𝑥) ∈ 𝐼))) |
| 28 | simp2 1137 | . . . . . . . . 9 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝐸 ∈ 𝐵 ∧ (𝐸(-g‘𝑅)𝑥) ∈ 𝐼) → 𝐸 ∈ 𝐵) | |
| 29 | 27, 28 | biimtrdi 253 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑥 ∼ 𝐸 → 𝐸 ∈ 𝐵)) |
| 30 | 17, 29 | sylbid 240 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝐸 ∈ [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 31 | 30 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 32 | 15, 31 | sylbid 240 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐵) ∧ (1r‘𝑄) = [𝑥] ∼ ) → (𝐸 ∈ (1r‘𝑄) → 𝐸 ∈ 𝐵)) |
| 33 | 32 | ex 412 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑄) = [𝑥] ∼ → (𝐸 ∈ (1r‘𝑄) → 𝐸 ∈ 𝐵))) |
| 34 | 13, 33 | mpid 44 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((1r‘𝑄) = [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 35 | 34 | rexlimdva 3134 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 (1r‘𝑄) = [𝑥] ∼ → 𝐸 ∈ 𝐵)) |
| 36 | 11, 35 | mpd 15 | 1 ⊢ (𝜑 → 𝐸 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 ⊆ wss 3898 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 [cec 8629 Basecbs 17127 ↾s cress 17148 .rcmulr 17169 /s cqus 17417 -gcsg 18856 ~QG cqg 19043 Abelcabl 19701 Rngcrng 20078 1rcur 20107 Ringcrg 20159 2Idealc2idl 21195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-ec 8633 df-qs 8637 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-0g 17352 df-imas 17420 df-qus 17421 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-eqg 19046 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-lss 20874 df-sra 21116 df-rgmod 21117 df-lidl 21154 df-2idl 21196 |
| This theorem is referenced by: rngqiprngfulem3 21259 rngqiprngfulem4 21260 rngqiprngfulem5 21261 |
| Copyright terms: Public domain | W3C validator |