![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnglz | Structured version Visualization version GIF version |
Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 20316. (Revised by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
rngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
rngcl.t | ⊢ · = (.r‘𝑅) |
rnglz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
rnglz | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngabl 20182 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
2 | ablgrp 19827 | . . . . . . 7 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
4 | rngcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
5 | rnglz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
6 | 4, 5 | grpidcl 19005 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
7 | eqid 2740 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
8 | 4, 7, 5 | grplid 19007 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
9 | 3, 6, 8 | syl2anc2 584 | . . . . 5 ⊢ (𝑅 ∈ Rng → ( 0 (+g‘𝑅) 0 ) = 0 ) |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
11 | 10 | oveq1d 7463 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = ( 0 · 𝑋)) |
12 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Rng) | |
13 | 3, 6 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
14 | 13, 13 | jca 511 | . . . . . 6 ⊢ (𝑅 ∈ Rng → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) |
15 | 14 | anim1i 614 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) |
16 | df-3an 1089 | . . . . 5 ⊢ (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) | |
17 | 15, 16 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
18 | rngcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
19 | 4, 7, 18 | rngdir 20188 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
20 | 12, 17, 19 | syl2anc 583 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
21 | 3 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
22 | 13 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
23 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
24 | 4, 18 | rngcl 20191 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
25 | 12, 22, 23, 24 | syl3anc 1371 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
26 | 4, 7, 5 | grprid 19008 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅) 0 ) = ( 0 · 𝑋)) |
27 | 26 | eqcomd 2746 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
28 | 21, 25, 27 | syl2anc 583 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
29 | 11, 20, 28 | 3eqtr3d 2788 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
30 | 4, 7 | grplcan 19040 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
31 | 21, 25, 22, 25, 30 | syl13anc 1372 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
32 | 29, 31 | mpbid 232 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 0gc0g 17499 Grpcgrp 18973 Abelcabl 19823 Rngcrng 20179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-abl 19825 df-mgp 20162 df-rng 20180 |
This theorem is referenced by: rngmneg1 20194 ringlz 20316 zrrnghm 20562 cntzsubrng 20593 |
Copyright terms: Public domain | W3C validator |