| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnglz | Structured version Visualization version GIF version | ||
| Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 20258. (Revised by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| rngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngcl.t | ⊢ · = (.r‘𝑅) |
| rnglz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rnglz | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngabl 20120 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 2 | ablgrp 19771 | . . . . . . 7 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| 4 | rngcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | rnglz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 5 | grpidcl 18952 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 7 | eqid 2734 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 8 | 4, 7, 5 | grplid 18954 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 9 | 3, 6, 8 | syl2anc2 585 | . . . . 5 ⊢ (𝑅 ∈ Rng → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 11 | 10 | oveq1d 7428 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = ( 0 · 𝑋)) |
| 12 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Rng) | |
| 13 | 3, 6 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
| 14 | 13, 13 | jca 511 | . . . . . 6 ⊢ (𝑅 ∈ Rng → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) |
| 15 | 14 | anim1i 615 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) |
| 16 | df-3an 1088 | . . . . 5 ⊢ (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) | |
| 17 | 15, 16 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
| 18 | rngcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 19 | 4, 7, 18 | rngdir 20126 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
| 20 | 12, 17, 19 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
| 21 | 3 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 22 | 13 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 23 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 24 | 4, 18 | rngcl 20129 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
| 25 | 12, 22, 23, 24 | syl3anc 1372 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
| 26 | 4, 7, 5 | grprid 18955 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅) 0 ) = ( 0 · 𝑋)) |
| 27 | 26 | eqcomd 2740 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
| 28 | 21, 25, 27 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
| 29 | 11, 20, 28 | 3eqtr3d 2777 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
| 30 | 4, 7 | grplcan 18987 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
| 31 | 21, 25, 22, 25, 30 | syl13anc 1373 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
| 32 | 29, 31 | mpbid 232 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 +gcplusg 17273 .rcmulr 17274 0gc0g 17455 Grpcgrp 18920 Abelcabl 19767 Rngcrng 20117 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-plusg 17286 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-grp 18923 df-minusg 18924 df-abl 19769 df-mgp 20106 df-rng 20118 |
| This theorem is referenced by: rngmneg1 20132 ringlz 20258 zrrnghm 20504 cntzsubrng 20535 |
| Copyright terms: Public domain | W3C validator |