MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglz Structured version   Visualization version   GIF version

Theorem rnglz 20068
Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 20196. (Revised by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b 𝐵 = (Base‘𝑅)
rngcl.t · = (.r𝑅)
rnglz.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglz ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )

Proof of Theorem rnglz
StepHypRef Expression
1 rngabl 20058 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
2 ablgrp 19682 . . . . . . 7 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
31, 2syl 17 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
4 rngcl.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 rnglz.z . . . . . . 7 0 = (0g𝑅)
64, 5grpidcl 18862 . . . . . 6 (𝑅 ∈ Grp → 0𝐵)
7 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
84, 7, 5grplid 18864 . . . . . 6 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
93, 6, 8syl2anc2 585 . . . . 5 (𝑅 ∈ Rng → ( 0 (+g𝑅) 0 ) = 0 )
109adantr 480 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
1110oveq1d 7368 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = ( 0 · 𝑋))
12 simpl 482 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Rng)
133, 6syl 17 . . . . . . 7 (𝑅 ∈ Rng → 0𝐵)
1413, 13jca 511 . . . . . 6 (𝑅 ∈ Rng → ( 0𝐵0𝐵))
1514anim1i 615 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0𝐵0𝐵) ∧ 𝑋𝐵))
16 df-3an 1088 . . . . 5 (( 0𝐵0𝐵𝑋𝐵) ↔ (( 0𝐵0𝐵) ∧ 𝑋𝐵))
1715, 16sylibr 234 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0𝐵0𝐵𝑋𝐵))
18 rngcl.t . . . . 5 · = (.r𝑅)
194, 7, 18rngdir 20064 . . . 4 ((𝑅 ∈ Rng ∧ ( 0𝐵0𝐵𝑋𝐵)) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
2012, 17, 19syl2anc 584 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
213adantr 480 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
2213adantr 480 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 0𝐵)
23 simpr 484 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑋𝐵)
244, 18rngcl 20067 . . . . 5 ((𝑅 ∈ Rng ∧ 0𝐵𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
2512, 22, 23, 24syl3anc 1373 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
264, 7, 5grprid 18865 . . . . 5 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g𝑅) 0 ) = ( 0 · 𝑋))
2726eqcomd 2735 . . . 4 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2821, 25, 27syl2anc 584 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2911, 20, 283eqtr3d 2772 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ))
304, 7grplcan 18897 . . 3 ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵0𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
3121, 25, 22, 25, 30syl13anc 1374 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
3229, 31mpbid 232 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  0gc0g 17361  Grpcgrp 18830  Abelcabl 19678  Rngcrng 20055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-abl 19680  df-mgp 20044  df-rng 20056
This theorem is referenced by:  rngmneg1  20070  ringlz  20196  zrrnghm  20439  cntzsubrng  20470
  Copyright terms: Public domain W3C validator