| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnglz | Structured version Visualization version GIF version | ||
| Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) Generalization of ringlz 20208. (Revised by AV, 17-Apr-2020.) |
| Ref | Expression |
|---|---|
| rngcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngcl.t | ⊢ · = (.r‘𝑅) |
| rnglz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| rnglz | ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngabl 20070 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 2 | ablgrp 19721 | . . . . . . 7 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) |
| 4 | rngcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | rnglz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 6 | 4, 5 | grpidcl 18903 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 7 | eqid 2730 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 8 | 4, 7, 5 | grplid 18905 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 9 | 3, 6, 8 | syl2anc2 585 | . . . . 5 ⊢ (𝑅 ∈ Rng → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 11 | 10 | oveq1d 7404 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = ( 0 · 𝑋)) |
| 12 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Rng) | |
| 13 | 3, 6 | syl 17 | . . . . . . 7 ⊢ (𝑅 ∈ Rng → 0 ∈ 𝐵) |
| 14 | 13, 13 | jca 511 | . . . . . 6 ⊢ (𝑅 ∈ Rng → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵)) |
| 15 | 14 | anim1i 615 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) |
| 16 | df-3an 1088 | . . . . 5 ⊢ (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ↔ (( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵) ∧ 𝑋 ∈ 𝐵)) | |
| 17 | 15, 16 | sylibr 234 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
| 18 | rngcl.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 19 | 4, 7, 18 | rngdir 20076 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
| 20 | 12, 17, 19 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
| 21 | 3 | adantr 480 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 22 | 13 | adantr 480 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 23 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 24 | 4, 18 | rngcl 20079 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
| 25 | 12, 22, 23, 24 | syl3anc 1373 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
| 26 | 4, 7, 5 | grprid 18906 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅) 0 ) = ( 0 · 𝑋)) |
| 27 | 26 | eqcomd 2736 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
| 28 | 21, 25, 27 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
| 29 | 11, 20, 28 | 3eqtr3d 2773 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
| 30 | 4, 7 | grplcan 18938 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
| 31 | 21, 25, 22, 25, 30 | syl13anc 1374 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
| 32 | 29, 31 | mpbid 232 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 Basecbs 17185 +gcplusg 17226 .rcmulr 17227 0gc0g 17408 Grpcgrp 18871 Abelcabl 19717 Rngcrng 20067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-abl 19719 df-mgp 20056 df-rng 20068 |
| This theorem is referenced by: rngmneg1 20082 ringlz 20208 zrrnghm 20451 cntzsubrng 20482 |
| Copyright terms: Public domain | W3C validator |