Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnglz Structured version   Visualization version   GIF version

Theorem rnglz 46114
Description: The zero of a non-unital ring is a left-absorbing element. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
rngcl.b 𝐵 = (Base‘𝑅)
rngcl.t · = (.r𝑅)
rnglz.z 0 = (0g𝑅)
Assertion
Ref Expression
rnglz ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )

Proof of Theorem rnglz
StepHypRef Expression
1 rngabl 46107 . . . . . . 7 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
2 ablgrp 19558 . . . . . . 7 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
31, 2syl 17 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
4 rngcl.b . . . . . . 7 𝐵 = (Base‘𝑅)
5 rnglz.z . . . . . . 7 0 = (0g𝑅)
64, 5grpidcl 18770 . . . . . 6 (𝑅 ∈ Grp → 0𝐵)
7 eqid 2736 . . . . . . 7 (+g𝑅) = (+g𝑅)
84, 7, 5grplid 18772 . . . . . 6 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
93, 6, 8syl2anc2 585 . . . . 5 (𝑅 ∈ Rng → ( 0 (+g𝑅) 0 ) = 0 )
109adantr 481 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
1110oveq1d 7368 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = ( 0 · 𝑋))
12 simpl 483 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Rng)
133, 6syl 17 . . . . . . 7 (𝑅 ∈ Rng → 0𝐵)
1413, 13jca 512 . . . . . 6 (𝑅 ∈ Rng → ( 0𝐵0𝐵))
1514anim1i 615 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0𝐵0𝐵) ∧ 𝑋𝐵))
16 df-3an 1089 . . . . 5 (( 0𝐵0𝐵𝑋𝐵) ↔ (( 0𝐵0𝐵) ∧ 𝑋𝐵))
1715, 16sylibr 233 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0𝐵0𝐵𝑋𝐵))
18 rngcl.t . . . . 5 · = (.r𝑅)
194, 7, 18rngdir 46112 . . . 4 ((𝑅 ∈ Rng ∧ ( 0𝐵0𝐵𝑋𝐵)) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
2012, 17, 19syl2anc 584 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
213adantr 481 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
2213adantr 481 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 0𝐵)
23 simpr 485 . . . . 5 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → 𝑋𝐵)
244, 18rngcl 46113 . . . . 5 ((𝑅 ∈ Rng ∧ 0𝐵𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
2512, 22, 23, 24syl3anc 1371 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
264, 7, 5grprid 18773 . . . . 5 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g𝑅) 0 ) = ( 0 · 𝑋))
2726eqcomd 2742 . . . 4 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2821, 25, 27syl2anc 584 . . 3 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2911, 20, 283eqtr3d 2784 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ))
304, 7grplcan 18800 . . 3 ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵0𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
3121, 25, 22, 25, 30syl13anc 1372 . 2 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
3229, 31mpbid 231 1 ((𝑅 ∈ Rng ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  cfv 6493  (class class class)co 7353  Basecbs 17075  +gcplusg 17125  .rcmulr 17126  0gc0g 17313  Grpcgrp 18740  Abelcabl 19554  Rngcrng 46104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-nn 12150  df-2 12212  df-sets 17028  df-slot 17046  df-ndx 17058  df-base 17076  df-plusg 17138  df-0g 17315  df-mgm 18489  df-sgrp 18538  df-mnd 18549  df-grp 18743  df-minusg 18744  df-abl 19556  df-mgp 19888  df-rng0 46105
This theorem is referenced by:  zrrnghm  46147
  Copyright terms: Public domain W3C validator