| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qus2idrng | Structured version Visualization version GIF version | ||
| Description: The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 21241 analog). (Contributed by AV, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| qus2idrng.u | ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
| qus2idrng.i | ⊢ 𝐼 = (2Ideal‘𝑅) |
| Ref | Expression |
|---|---|
| qus2idrng | ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qus2idrng.u | . . 3 ⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
| 3 | eqidd 2737 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (Base‘𝑅) = (Base‘𝑅)) | |
| 4 | eqid 2736 | . 2 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 5 | eqid 2736 | . 2 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 6 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) | |
| 7 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | eqid 2736 | . . . 4 ⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) | |
| 9 | 7, 8 | eqger 19166 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 10 | 6, 9 | syl 17 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (𝑅 ~QG 𝑆) Er (Base‘𝑅)) |
| 11 | rngabl 20120 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 12 | 11 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Abel) |
| 13 | ablnsg 19833 | . . . . 5 ⊢ (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
| 15 | 6, 14 | eleqtrrd 2838 | . . 3 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
| 16 | 7, 8, 4 | eqgcpbl 19170 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
| 17 | 15, 16 | syl 17 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g‘𝑅)𝑑))) |
| 18 | qus2idrng.i | . . 3 ⊢ 𝐼 = (2Ideal‘𝑅) | |
| 19 | 7, 8, 18, 5 | 2idlcpblrng 21237 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
| 20 | simp1 1136 | . 2 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑅 ∈ Rng) | |
| 21 | 2, 3, 4, 5, 10, 17, 19, 20 | qusrng 20145 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrp‘𝑅)) → 𝑈 ∈ Rng) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5124 ‘cfv 6536 (class class class)co 7410 Er wer 8721 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 /s cqus 17524 SubGrpcsubg 19108 NrmSGrpcnsg 19109 ~QG cqg 19110 Abelcabl 19767 Rngcrng 20117 2Idealc2idl 21215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-ec 8726 df-qs 8730 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-0g 17460 df-imas 17527 df-qus 17528 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-nsg 19112 df-eqg 19113 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-oppr 20302 df-lss 20894 df-sra 21136 df-rgmod 21137 df-lidl 21174 df-2idl 21216 |
| This theorem is referenced by: rngqiprng 21262 rngqiprngimf1 21266 pzriprnglem13 21459 |
| Copyright terms: Public domain | W3C validator |