MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprrng Structured version   Visualization version   GIF version

Theorem opprrng 20362
Description: An opposite non-unital ring is a non-unital ring. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprrng (𝑅 ∈ Rng → 𝑂 ∈ Rng)

Proof of Theorem opprrng
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . . 4 𝑂 = (oppr𝑅)
2 eqid 2735 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2opprbas 20358 . . 3 (Base‘𝑅) = (Base‘𝑂)
43a1i 11 . 2 (𝑅 ∈ Rng → (Base‘𝑅) = (Base‘𝑂))
5 eqid 2735 . . . 4 (+g𝑅) = (+g𝑅)
61, 5oppradd 20360 . . 3 (+g𝑅) = (+g𝑂)
76a1i 11 . 2 (𝑅 ∈ Rng → (+g𝑅) = (+g𝑂))
8 eqidd 2736 . 2 (𝑅 ∈ Rng → (.r𝑂) = (.r𝑂))
9 rngabl 20173 . . 3 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
103, 6ablprop 19826 . . 3 (𝑅 ∈ Abel ↔ 𝑂 ∈ Abel)
119, 10sylib 218 . 2 (𝑅 ∈ Rng → 𝑂 ∈ Abel)
12 eqid 2735 . . . 4 (.r𝑅) = (.r𝑅)
13 eqid 2735 . . . 4 (.r𝑂) = (.r𝑂)
142, 12, 1, 13opprmul 20354 . . 3 (𝑥(.r𝑂)𝑦) = (𝑦(.r𝑅)𝑥)
152, 12rngcl 20182 . . . 4 ((𝑅 ∈ Rng ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
16153com23 1125 . . 3 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(.r𝑅)𝑥) ∈ (Base‘𝑅))
1714, 16eqeltrid 2843 . 2 ((𝑅 ∈ Rng ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑂)𝑦) ∈ (Base‘𝑅))
18 simpl 482 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Rng)
19 simpr3 1195 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
20 simpr2 1194 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
21 simpr1 1193 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
222, 12rngass 20177 . . . . 5 ((𝑅 ∈ Rng ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
2318, 19, 20, 21, 22syl13anc 1371 . . . 4 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)))
2423eqcomd 2741 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥))
2514oveq1i 7441 . . . 4 ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧)
262, 12, 1, 13opprmul 20354 . . . 4 ((𝑦(.r𝑅)𝑥)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥))
2725, 26eqtri 2763 . . 3 ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑦(.r𝑅)𝑥))
282, 12, 1, 13opprmul 20354 . . . . 5 (𝑦(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑦)
2928oveq2i 7442 . . . 4 (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)) = (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦))
302, 12, 1, 13opprmul 20354 . . . 4 (𝑥(.r𝑂)(𝑧(.r𝑅)𝑦)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥)
3129, 30eqtri 2763 . . 3 (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)) = ((𝑧(.r𝑅)𝑦)(.r𝑅)𝑥)
3224, 27, 313eqtr4g 2800 . 2 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r𝑂)𝑦)(.r𝑂)𝑧) = (𝑥(.r𝑂)(𝑦(.r𝑂)𝑧)))
332, 5, 12rngdir 20179 . . . 4 ((𝑅 ∈ Rng ∧ (𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
3418, 20, 19, 21, 33syl13anc 1371 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥)))
352, 12, 1, 13opprmul 20354 . . 3 (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑦(+g𝑅)𝑧)(.r𝑅)𝑥)
362, 12, 1, 13opprmul 20354 . . . 4 (𝑥(.r𝑂)𝑧) = (𝑧(.r𝑅)𝑥)
3714, 36oveq12i 7443 . . 3 ((𝑥(.r𝑂)𝑦)(+g𝑅)(𝑥(.r𝑂)𝑧)) = ((𝑦(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑥))
3834, 35, 373eqtr4g 2800 . 2 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥(.r𝑂)(𝑦(+g𝑅)𝑧)) = ((𝑥(.r𝑂)𝑦)(+g𝑅)(𝑥(.r𝑂)𝑧)))
392, 5, 12rngdi 20178 . . . 4 ((𝑅 ∈ Rng ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
4018, 19, 21, 20, 39syl13anc 1371 . . 3 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦)))
412, 12, 1, 13opprmul 20354 . . 3 ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = (𝑧(.r𝑅)(𝑥(+g𝑅)𝑦))
4236, 28oveq12i 7443 . . 3 ((𝑥(.r𝑂)𝑧)(+g𝑅)(𝑦(.r𝑂)𝑧)) = ((𝑧(.r𝑅)𝑥)(+g𝑅)(𝑧(.r𝑅)𝑦))
4340, 41, 423eqtr4g 2800 . 2 ((𝑅 ∈ Rng ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑅)𝑦)(.r𝑂)𝑧) = ((𝑥(.r𝑂)𝑧)(+g𝑅)(𝑦(.r𝑂)𝑧)))
444, 7, 8, 11, 17, 32, 38, 43isrngd 20191 1 (𝑅 ∈ Rng → 𝑂 ∈ Rng)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Abelcabl 19814  Rngcrng 20170  opprcoppr 20350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-oppr 20351
This theorem is referenced by:  opprrngb  20363  opprring  20364  rngridlmcl  21245  isridlrng  21247  2idlcpblrng  21299
  Copyright terms: Public domain W3C validator