MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isrnghmd Structured version   Visualization version   GIF version

Theorem isrnghmd 20354
Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.)
Hypotheses
Ref Expression
isrnghmd.b 𝐵 = (Base‘𝑅)
isrnghmd.t · = (.r𝑅)
isrnghmd.u × = (.r𝑆)
isrnghmd.r (𝜑𝑅 ∈ Rng)
isrnghmd.s (𝜑𝑆 ∈ Rng)
isrnghmd.ht ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
isrnghmd.c 𝐶 = (Base‘𝑆)
isrnghmd.p + = (+g𝑅)
isrnghmd.q = (+g𝑆)
isrnghmd.f (𝜑𝐹:𝐵𝐶)
isrnghmd.hp ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
Assertion
Ref Expression
isrnghmd (𝜑𝐹 ∈ (𝑅 RngHom 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)

Proof of Theorem isrnghmd
StepHypRef Expression
1 isrnghmd.b . 2 𝐵 = (Base‘𝑅)
2 isrnghmd.t . 2 · = (.r𝑅)
3 isrnghmd.u . 2 × = (.r𝑆)
4 isrnghmd.r . 2 (𝜑𝑅 ∈ Rng)
5 isrnghmd.s . 2 (𝜑𝑆 ∈ Rng)
6 isrnghmd.ht . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
7 isrnghmd.c . . 3 𝐶 = (Base‘𝑆)
8 isrnghmd.p . . 3 + = (+g𝑅)
9 isrnghmd.q . . 3 = (+g𝑆)
10 rngabl 20058 . . . 4 (𝑅 ∈ Rng → 𝑅 ∈ Abel)
11 ablgrp 19682 . . . 4 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
124, 10, 113syl 18 . . 3 (𝜑𝑅 ∈ Grp)
13 rngabl 20058 . . . 4 (𝑆 ∈ Rng → 𝑆 ∈ Abel)
14 ablgrp 19682 . . . 4 (𝑆 ∈ Abel → 𝑆 ∈ Grp)
155, 13, 143syl 18 . . 3 (𝜑𝑆 ∈ Grp)
16 isrnghmd.f . . 3 (𝜑𝐹:𝐵𝐶)
17 isrnghmd.hp . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
181, 7, 8, 9, 12, 15, 16, 17isghmd 19122 . 2 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
191, 2, 3, 4, 5, 6, 18isrnghm2d 20353 1 (𝜑𝐹 ∈ (𝑅 RngHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6482  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Grpcgrp 18830  Abelcabl 19678  Rngcrng 20055   RngHom crnghm 20337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-ghm 19110  df-abl 19680  df-rng 20056  df-rnghm 20339
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator