Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrnghmd | Structured version Visualization version GIF version |
Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
Ref | Expression |
---|---|
isrnghmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrnghmd.t | ⊢ · = (.r‘𝑅) |
isrnghmd.u | ⊢ × = (.r‘𝑆) |
isrnghmd.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
isrnghmd.s | ⊢ (𝜑 → 𝑆 ∈ Rng) |
isrnghmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrnghmd.c | ⊢ 𝐶 = (Base‘𝑆) |
isrnghmd.p | ⊢ + = (+g‘𝑅) |
isrnghmd.q | ⊢ ⨣ = (+g‘𝑆) |
isrnghmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
isrnghmd.hp | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
Ref | Expression |
---|---|
isrnghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHomo 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnghmd.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isrnghmd.t | . 2 ⊢ · = (.r‘𝑅) | |
3 | isrnghmd.u | . 2 ⊢ × = (.r‘𝑆) | |
4 | isrnghmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
5 | isrnghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Rng) | |
6 | isrnghmd.ht | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
7 | isrnghmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
8 | isrnghmd.p | . . 3 ⊢ + = (+g‘𝑅) | |
9 | isrnghmd.q | . . 3 ⊢ ⨣ = (+g‘𝑆) | |
10 | rngabl 45323 | . . . 4 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
11 | ablgrp 19306 | . . . 4 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
12 | 4, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
13 | rngabl 45323 | . . . 4 ⊢ (𝑆 ∈ Rng → 𝑆 ∈ Abel) | |
14 | ablgrp 19306 | . . . 4 ⊢ (𝑆 ∈ Abel → 𝑆 ∈ Grp) | |
15 | 5, 13, 14 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
16 | isrnghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
17 | isrnghmd.hp | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
18 | 1, 7, 8, 9, 12, 15, 16, 17 | isghmd 18758 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
19 | 1, 2, 3, 4, 5, 6, 18 | isrnghm2d 45347 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHomo 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 .rcmulr 16889 Grpcgrp 18492 Abelcabl 19302 Rngcrng 45320 RngHomo crngh 45331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-ghm 18747 df-abl 19304 df-rng0 45321 df-rnghomo 45333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |