![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrnghmd | Structured version Visualization version GIF version |
Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
Ref | Expression |
---|---|
isrnghmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrnghmd.t | ⊢ · = (.r‘𝑅) |
isrnghmd.u | ⊢ × = (.r‘𝑆) |
isrnghmd.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
isrnghmd.s | ⊢ (𝜑 → 𝑆 ∈ Rng) |
isrnghmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrnghmd.c | ⊢ 𝐶 = (Base‘𝑆) |
isrnghmd.p | ⊢ + = (+g‘𝑅) |
isrnghmd.q | ⊢ ⨣ = (+g‘𝑆) |
isrnghmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
isrnghmd.hp | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
Ref | Expression |
---|---|
isrnghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnghmd.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isrnghmd.t | . 2 ⊢ · = (.r‘𝑅) | |
3 | isrnghmd.u | . 2 ⊢ × = (.r‘𝑆) | |
4 | isrnghmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
5 | isrnghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Rng) | |
6 | isrnghmd.ht | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
7 | isrnghmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
8 | isrnghmd.p | . . 3 ⊢ + = (+g‘𝑅) | |
9 | isrnghmd.q | . . 3 ⊢ ⨣ = (+g‘𝑆) | |
10 | rngabl 20182 | . . . 4 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
11 | ablgrp 19827 | . . . 4 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
12 | 4, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
13 | rngabl 20182 | . . . 4 ⊢ (𝑆 ∈ Rng → 𝑆 ∈ Abel) | |
14 | ablgrp 19827 | . . . 4 ⊢ (𝑆 ∈ Abel → 𝑆 ∈ Grp) | |
15 | 5, 13, 14 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
16 | isrnghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
17 | isrnghmd.hp | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
18 | 1, 7, 8, 9, 12, 15, 16, 17 | isghmd 19265 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
19 | 1, 2, 3, 4, 5, 6, 18 | isrnghm2d 20476 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Grpcgrp 18973 Abelcabl 19823 Rngcrng 20179 RngHom crnghm 20460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-ghm 19253 df-abl 19825 df-rng 20180 df-rnghm 20462 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |