| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isrnghmd | Structured version Visualization version GIF version | ||
| Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
| Ref | Expression |
|---|---|
| isrnghmd.b | ⊢ 𝐵 = (Base‘𝑅) |
| isrnghmd.t | ⊢ · = (.r‘𝑅) |
| isrnghmd.u | ⊢ × = (.r‘𝑆) |
| isrnghmd.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| isrnghmd.s | ⊢ (𝜑 → 𝑆 ∈ Rng) |
| isrnghmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
| isrnghmd.c | ⊢ 𝐶 = (Base‘𝑆) |
| isrnghmd.p | ⊢ + = (+g‘𝑅) |
| isrnghmd.q | ⊢ ⨣ = (+g‘𝑆) |
| isrnghmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| isrnghmd.hp | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| Ref | Expression |
|---|---|
| isrnghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnghmd.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | isrnghmd.t | . 2 ⊢ · = (.r‘𝑅) | |
| 3 | isrnghmd.u | . 2 ⊢ × = (.r‘𝑆) | |
| 4 | isrnghmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 5 | isrnghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Rng) | |
| 6 | isrnghmd.ht | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
| 7 | isrnghmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
| 8 | isrnghmd.p | . . 3 ⊢ + = (+g‘𝑅) | |
| 9 | isrnghmd.q | . . 3 ⊢ ⨣ = (+g‘𝑆) | |
| 10 | rngabl 20120 | . . . 4 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
| 11 | ablgrp 19771 | . . . 4 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
| 12 | 4, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 13 | rngabl 20120 | . . . 4 ⊢ (𝑆 ∈ Rng → 𝑆 ∈ Abel) | |
| 14 | ablgrp 19771 | . . . 4 ⊢ (𝑆 ∈ Abel → 𝑆 ∈ Grp) | |
| 15 | 5, 13, 14 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
| 16 | isrnghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 17 | isrnghmd.hp | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 18 | 1, 7, 8, 9, 12, 15, 16, 17 | isghmd 19213 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
| 19 | 1, 2, 3, 4, 5, 6, 18 | isrnghm2d 20415 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 Grpcgrp 18921 Abelcabl 19767 Rngcrng 20117 RngHom crnghm 20399 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-map 8847 df-ghm 19201 df-abl 19769 df-rng 20118 df-rnghm 20401 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |