Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrnghmd | Structured version Visualization version GIF version |
Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
Ref | Expression |
---|---|
isrnghmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrnghmd.t | ⊢ · = (.r‘𝑅) |
isrnghmd.u | ⊢ × = (.r‘𝑆) |
isrnghmd.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
isrnghmd.s | ⊢ (𝜑 → 𝑆 ∈ Rng) |
isrnghmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrnghmd.c | ⊢ 𝐶 = (Base‘𝑆) |
isrnghmd.p | ⊢ + = (+g‘𝑅) |
isrnghmd.q | ⊢ ⨣ = (+g‘𝑆) |
isrnghmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
isrnghmd.hp | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
Ref | Expression |
---|---|
isrnghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHomo 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnghmd.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isrnghmd.t | . 2 ⊢ · = (.r‘𝑅) | |
3 | isrnghmd.u | . 2 ⊢ × = (.r‘𝑆) | |
4 | isrnghmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
5 | isrnghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Rng) | |
6 | isrnghmd.ht | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
7 | isrnghmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
8 | isrnghmd.p | . . 3 ⊢ + = (+g‘𝑅) | |
9 | isrnghmd.q | . . 3 ⊢ ⨣ = (+g‘𝑆) | |
10 | rngabl 44998 | . . . 4 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
11 | ablgrp 19031 | . . . 4 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
12 | 4, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
13 | rngabl 44998 | . . . 4 ⊢ (𝑆 ∈ Rng → 𝑆 ∈ Abel) | |
14 | ablgrp 19031 | . . . 4 ⊢ (𝑆 ∈ Abel → 𝑆 ∈ Grp) | |
15 | 5, 13, 14 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
16 | isrnghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
17 | isrnghmd.hp | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
18 | 1, 7, 8, 9, 12, 15, 16, 17 | isghmd 18487 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
19 | 1, 2, 3, 4, 5, 6, 18 | isrnghm2d 45022 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHomo 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ⟶wf 6335 ‘cfv 6339 (class class class)co 7172 Basecbs 16588 +gcplusg 16670 .rcmulr 16671 Grpcgrp 18221 Abelcabl 19027 Rngcrng 44995 RngHomo crngh 45006 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7175 df-oprab 7176 df-mpo 7177 df-map 8441 df-ghm 18476 df-abl 19029 df-rng0 44996 df-rnghomo 45008 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |