![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isrnghmd | Structured version Visualization version GIF version |
Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
Ref | Expression |
---|---|
isrnghmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrnghmd.t | ⊢ · = (.r‘𝑅) |
isrnghmd.u | ⊢ × = (.r‘𝑆) |
isrnghmd.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
isrnghmd.s | ⊢ (𝜑 → 𝑆 ∈ Rng) |
isrnghmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrnghmd.c | ⊢ 𝐶 = (Base‘𝑆) |
isrnghmd.p | ⊢ + = (+g‘𝑅) |
isrnghmd.q | ⊢ ⨣ = (+g‘𝑆) |
isrnghmd.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
isrnghmd.hp | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
Ref | Expression |
---|---|
isrnghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnghmd.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | isrnghmd.t | . 2 ⊢ · = (.r‘𝑅) | |
3 | isrnghmd.u | . 2 ⊢ × = (.r‘𝑆) | |
4 | isrnghmd.r | . 2 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
5 | isrnghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Rng) | |
6 | isrnghmd.ht | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
7 | isrnghmd.c | . . 3 ⊢ 𝐶 = (Base‘𝑆) | |
8 | isrnghmd.p | . . 3 ⊢ + = (+g‘𝑅) | |
9 | isrnghmd.q | . . 3 ⊢ ⨣ = (+g‘𝑆) | |
10 | rngabl 20134 | . . . 4 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Abel) | |
11 | ablgrp 19779 | . . . 4 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
12 | 4, 10, 11 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
13 | rngabl 20134 | . . . 4 ⊢ (𝑆 ∈ Rng → 𝑆 ∈ Abel) | |
14 | ablgrp 19779 | . . . 4 ⊢ (𝑆 ∈ Abel → 𝑆 ∈ Grp) | |
15 | 5, 13, 14 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑆 ∈ Grp) |
16 | isrnghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
17 | isrnghmd.hp | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
18 | 1, 7, 8, 9, 12, 15, 16, 17 | isghmd 19215 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
19 | 1, 2, 3, 4, 5, 6, 18 | isrnghm2d 20428 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHom 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ⟶wf 6542 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 +gcplusg 17261 .rcmulr 17262 Grpcgrp 18923 Abelcabl 19775 Rngcrng 20131 RngHom crnghm 20412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-map 8849 df-ghm 19203 df-abl 19777 df-rng 20132 df-rnghm 20414 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |