Step | Hyp | Ref
| Expression |
1 | | simpl1 1191 |
. . . 4
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π
β Rng) |
2 | | simpl3 1193 |
. . . . . . . 8
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π β (SubGrpβπ
)) |
3 | | 2idlcpblrng.x |
. . . . . . . . 9
β’ π = (Baseβπ
) |
4 | | 2idlcpblrng.r |
. . . . . . . . 9
β’ πΈ = (π
~QG π) |
5 | 3, 4 | eqger 19052 |
. . . . . . . 8
β’ (π β (SubGrpβπ
) β πΈ Er π) |
6 | 2, 5 | syl 17 |
. . . . . . 7
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β πΈ Er π) |
7 | | simprl 769 |
. . . . . . 7
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π΄πΈπΆ) |
8 | 6, 7 | ersym 8711 |
. . . . . 6
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β πΆπΈπ΄) |
9 | | rngabl 46637 |
. . . . . . . 8
β’ (π
β Rng β π
β Abel) |
10 | 9 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β π
β Abel) |
11 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(LIdealβπ
) =
(LIdealβπ
) |
12 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(opprβπ
) = (opprβπ
) |
13 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(LIdealβ(opprβπ
)) =
(LIdealβ(opprβπ
)) |
14 | | 2idlcpblrng.i |
. . . . . . . . . . . 12
β’ πΌ = (2Idealβπ
) |
15 | 11, 12, 13, 14 | 2idlelb 20857 |
. . . . . . . . . . 11
β’ (π β πΌ β (π β (LIdealβπ
) β§ π β
(LIdealβ(opprβπ
)))) |
16 | 15 | simplbi 498 |
. . . . . . . . . 10
β’ (π β πΌ β π β (LIdealβπ
)) |
17 | 16 | 3ad2ant2 1134 |
. . . . . . . . 9
β’ ((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β π β (LIdealβπ
)) |
18 | 17 | adantr 481 |
. . . . . . . 8
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π β (LIdealβπ
)) |
19 | 3, 11 | lidlss 20825 |
. . . . . . . 8
β’ (π β (LIdealβπ
) β π β π) |
20 | 18, 19 | syl 17 |
. . . . . . 7
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π β π) |
21 | | eqid 2732 |
. . . . . . . 8
β’
(-gβπ
) = (-gβπ
) |
22 | 3, 21, 4 | eqgabl 19696 |
. . . . . . 7
β’ ((π
β Abel β§ π β π) β (πΆπΈπ΄ β (πΆ β π β§ π΄ β π β§ (π΄(-gβπ
)πΆ) β π))) |
23 | 10, 20, 22 | syl2an2r 683 |
. . . . . 6
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (πΆπΈπ΄ β (πΆ β π β§ π΄ β π β§ (π΄(-gβπ
)πΆ) β π))) |
24 | 8, 23 | mpbid 231 |
. . . . 5
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (πΆ β π β§ π΄ β π β§ (π΄(-gβπ
)πΆ) β π)) |
25 | 24 | simp2d 1143 |
. . . 4
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π΄ β π) |
26 | | simprr 771 |
. . . . . 6
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π΅πΈπ·) |
27 | 3, 21, 4 | eqgabl 19696 |
. . . . . . 7
β’ ((π
β Abel β§ π β π) β (π΅πΈπ· β (π΅ β π β§ π· β π β§ (π·(-gβπ
)π΅) β π))) |
28 | 10, 20, 27 | syl2an2r 683 |
. . . . . 6
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (π΅πΈπ· β (π΅ β π β§ π· β π β§ (π·(-gβπ
)π΅) β π))) |
29 | 26, 28 | mpbid 231 |
. . . . 5
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (π΅ β π β§ π· β π β§ (π·(-gβπ
)π΅) β π)) |
30 | 29 | simp1d 1142 |
. . . 4
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π΅ β π) |
31 | | 2idlcpblrng.t |
. . . . 5
β’ Β· =
(.rβπ
) |
32 | 3, 31 | rngcl 46649 |
. . . 4
β’ ((π
β Rng β§ π΄ β π β§ π΅ β π) β (π΄ Β· π΅) β π) |
33 | 1, 25, 30, 32 | syl3anc 1371 |
. . 3
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (π΄ Β· π΅) β π) |
34 | 24 | simp1d 1142 |
. . . 4
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β πΆ β π) |
35 | 29 | simp2d 1143 |
. . . 4
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π· β π) |
36 | 3, 31 | rngcl 46649 |
. . . 4
β’ ((π
β Rng β§ πΆ β π β§ π· β π) β (πΆ Β· π·) β π) |
37 | 1, 34, 35, 36 | syl3anc 1371 |
. . 3
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (πΆ Β· π·) β π) |
38 | | rnggrp 46640 |
. . . . . . 7
β’ (π
β Rng β π
β Grp) |
39 | 38 | 3ad2ant1 1133 |
. . . . . 6
β’ ((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β π
β Grp) |
40 | 39 | adantr 481 |
. . . . 5
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π
β Grp) |
41 | 3, 31 | rngcl 46649 |
. . . . . 6
β’ ((π
β Rng β§ πΆ β π β§ π΅ β π) β (πΆ Β· π΅) β π) |
42 | 1, 34, 30, 41 | syl3anc 1371 |
. . . . 5
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (πΆ Β· π΅) β π) |
43 | 3, 21 | grpnnncan2 18916 |
. . . . 5
β’ ((π
β Grp β§ ((πΆ Β· π·) β π β§ (π΄ Β· π΅) β π β§ (πΆ Β· π΅) β π)) β (((πΆ Β· π·)(-gβπ
)(πΆ Β· π΅))(-gβπ
)((π΄ Β· π΅)(-gβπ
)(πΆ Β· π΅))) = ((πΆ Β· π·)(-gβπ
)(π΄ Β· π΅))) |
44 | 40, 37, 33, 42, 43 | syl13anc 1372 |
. . . 4
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (((πΆ Β· π·)(-gβπ
)(πΆ Β· π΅))(-gβπ
)((π΄ Β· π΅)(-gβπ
)(πΆ Β· π΅))) = ((πΆ Β· π·)(-gβπ
)(π΄ Β· π΅))) |
45 | 3, 31, 21, 1, 34, 35, 30 | rngsubdi 46656 |
. . . . . 6
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (πΆ Β· (π·(-gβπ
)π΅)) = ((πΆ Β· π·)(-gβπ
)(πΆ Β· π΅))) |
46 | | eqid 2732 |
. . . . . . . . . 10
β’
(0gβπ
) = (0gβπ
) |
47 | 46 | subg0cl 19008 |
. . . . . . . . 9
β’ (π β (SubGrpβπ
) β
(0gβπ
)
β π) |
48 | 47 | 3ad2ant3 1135 |
. . . . . . . 8
β’ ((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β (0gβπ
) β π) |
49 | 48 | adantr 481 |
. . . . . . 7
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (0gβπ
) β π) |
50 | 29 | simp3d 1144 |
. . . . . . 7
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (π·(-gβπ
)π΅) β π) |
51 | 46, 3, 31, 11 | rnglidlmcl 46732 |
. . . . . . 7
β’ (((π
β Rng β§ π β (LIdealβπ
) β§
(0gβπ
)
β π) β§ (πΆ β π β§ (π·(-gβπ
)π΅) β π)) β (πΆ Β· (π·(-gβπ
)π΅)) β π) |
52 | 1, 18, 49, 34, 50, 51 | syl32anc 1378 |
. . . . . 6
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (πΆ Β· (π·(-gβπ
)π΅)) β π) |
53 | 45, 52 | eqeltrrd 2834 |
. . . . 5
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β ((πΆ Β· π·)(-gβπ
)(πΆ Β· π΅)) β π) |
54 | | eqid 2732 |
. . . . . . . 8
β’
(.rβ(opprβπ
)) =
(.rβ(opprβπ
)) |
55 | 3, 31, 12, 54 | opprmul 20145 |
. . . . . . 7
β’ (π΅(.rβ(opprβπ
))(π΄(-gβπ
)πΆ))
= ((π΄(-gβπ
)πΆ) Β· π΅) |
56 | 3, 31, 21, 1, 25, 34, 30 | rngsubdir 46657 |
. . . . . . 7
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β ((π΄(-gβπ
)πΆ) Β· π΅) = ((π΄ Β· π΅)(-gβπ
)(πΆ Β· π΅))) |
57 | 55, 56 | eqtrid 2784 |
. . . . . 6
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (π΅(.rβ(opprβπ
))(π΄(-gβπ
)πΆ))
= ((π΄ Β· π΅)(-gβπ
)(πΆ
Β· π΅))) |
58 | 12 | opprrng 46660 |
. . . . . . . . 9
β’ (π
β Rng β
(opprβπ
) β Rng) |
59 | 58 | 3ad2ant1 1133 |
. . . . . . . 8
β’ ((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β
(opprβπ
) β Rng) |
60 | 59 | adantr 481 |
. . . . . . 7
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β
(opprβπ
) β Rng) |
61 | 15 | simprbi 497 |
. . . . . . . . 9
β’ (π β πΌ β π β
(LIdealβ(opprβπ
))) |
62 | 61 | 3ad2ant2 1134 |
. . . . . . . 8
β’ ((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β π β
(LIdealβ(opprβπ
))) |
63 | 62 | adantr 481 |
. . . . . . 7
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β π β
(LIdealβ(opprβπ
))) |
64 | 24 | simp3d 1144 |
. . . . . . 7
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (π΄(-gβπ
)πΆ) β π) |
65 | 12, 46 | oppr0 20155 |
. . . . . . . 8
β’
(0gβπ
) =
(0gβ(opprβπ
)) |
66 | 12, 3 | opprbas 20149 |
. . . . . . . 8
β’ π =
(Baseβ(opprβπ
)) |
67 | 65, 66, 54, 13 | rnglidlmcl 46732 |
. . . . . . 7
β’
((((opprβπ
) β Rng β§ π β
(LIdealβ(opprβπ
)) β§ (0gβπ
) β π) β§ (π΅ β π β§ (π΄(-gβπ
)πΆ) β π)) β (π΅(.rβ(opprβπ
))(π΄(-gβπ
)πΆ))
β π) |
68 | 60, 63, 49, 30, 64, 67 | syl32anc 1378 |
. . . . . 6
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (π΅(.rβ(opprβπ
))(π΄(-gβπ
)πΆ))
β π) |
69 | 57, 68 | eqeltrrd 2834 |
. . . . 5
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β ((π΄ Β· π΅)(-gβπ
)(πΆ Β· π΅)) β π) |
70 | 21 | subgsubcl 19011 |
. . . . 5
β’ ((π β (SubGrpβπ
) β§ ((πΆ Β· π·)(-gβπ
)(πΆ Β· π΅)) β π β§ ((π΄ Β· π΅)(-gβπ
)(πΆ Β· π΅)) β π) β (((πΆ Β· π·)(-gβπ
)(πΆ Β· π΅))(-gβπ
)((π΄ Β· π΅)(-gβπ
)(πΆ Β· π΅))) β π) |
71 | 2, 53, 69, 70 | syl3anc 1371 |
. . . 4
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (((πΆ Β· π·)(-gβπ
)(πΆ Β· π΅))(-gβπ
)((π΄ Β· π΅)(-gβπ
)(πΆ Β· π΅))) β π) |
72 | 44, 71 | eqeltrrd 2834 |
. . 3
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β ((πΆ Β· π·)(-gβπ
)(π΄ Β· π΅)) β π) |
73 | 3, 21, 4 | eqgabl 19696 |
. . . 4
β’ ((π
β Abel β§ π β π) β ((π΄ Β· π΅)πΈ(πΆ Β· π·) β ((π΄ Β· π΅) β π β§ (πΆ Β· π·) β π β§ ((πΆ Β· π·)(-gβπ
)(π΄ Β· π΅)) β π))) |
74 | 10, 20, 73 | syl2an2r 683 |
. . 3
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β ((π΄ Β· π΅)πΈ(πΆ Β· π·) β ((π΄ Β· π΅) β π β§ (πΆ Β· π·) β π β§ ((πΆ Β· π·)(-gβπ
)(π΄ Β· π΅)) β π))) |
75 | 33, 37, 72, 74 | mpbir3and 1342 |
. 2
β’ (((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β§ (π΄πΈπΆ β§ π΅πΈπ·)) β (π΄ Β· π΅)πΈ(πΆ Β· π·)) |
76 | 75 | ex 413 |
1
β’ ((π
β Rng β§ π β πΌ β§ π β (SubGrpβπ
)) β ((π΄πΈπΆ β§ π΅πΈπ·) β (π΄ Β· π΅)πΈ(πΆ Β· π·))) |