Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2idlcpblrng Structured version   Visualization version   GIF version

Theorem 2idlcpblrng 46747
Description: The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.) TODO: Replace 2idlcpbl 20863 if moved to main.
Hypotheses
Ref Expression
2idlcpblrng.x 𝑋 = (Baseβ€˜π‘…)
2idlcpblrng.r 𝐸 = (𝑅 ~QG 𝑆)
2idlcpblrng.i 𝐼 = (2Idealβ€˜π‘…)
2idlcpblrng.t Β· = (.rβ€˜π‘…)
Assertion
Ref Expression
2idlcpblrng ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) β†’ ((𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷) β†’ (𝐴 Β· 𝐡)𝐸(𝐢 Β· 𝐷)))

Proof of Theorem 2idlcpblrng
StepHypRef Expression
1 simpl1 1191 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝑅 ∈ Rng)
2 simpl3 1193 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝑆 ∈ (SubGrpβ€˜π‘…))
3 2idlcpblrng.x . . . . . . . . 9 𝑋 = (Baseβ€˜π‘…)
4 2idlcpblrng.r . . . . . . . . 9 𝐸 = (𝑅 ~QG 𝑆)
53, 4eqger 19052 . . . . . . . 8 (𝑆 ∈ (SubGrpβ€˜π‘…) β†’ 𝐸 Er 𝑋)
62, 5syl 17 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝐸 Er 𝑋)
7 simprl 769 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝐴𝐸𝐢)
86, 7ersym 8711 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝐢𝐸𝐴)
9 rngabl 46637 . . . . . . . 8 (𝑅 ∈ Rng β†’ 𝑅 ∈ Abel)
1093ad2ant1 1133 . . . . . . 7 ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) β†’ 𝑅 ∈ Abel)
11 eqid 2732 . . . . . . . . . . . 12 (LIdealβ€˜π‘…) = (LIdealβ€˜π‘…)
12 eqid 2732 . . . . . . . . . . . 12 (opprβ€˜π‘…) = (opprβ€˜π‘…)
13 eqid 2732 . . . . . . . . . . . 12 (LIdealβ€˜(opprβ€˜π‘…)) = (LIdealβ€˜(opprβ€˜π‘…))
14 2idlcpblrng.i . . . . . . . . . . . 12 𝐼 = (2Idealβ€˜π‘…)
1511, 12, 13, 142idlelb 20857 . . . . . . . . . . 11 (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdealβ€˜π‘…) ∧ 𝑆 ∈ (LIdealβ€˜(opprβ€˜π‘…))))
1615simplbi 498 . . . . . . . . . 10 (𝑆 ∈ 𝐼 β†’ 𝑆 ∈ (LIdealβ€˜π‘…))
17163ad2ant2 1134 . . . . . . . . 9 ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) β†’ 𝑆 ∈ (LIdealβ€˜π‘…))
1817adantr 481 . . . . . . . 8 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝑆 ∈ (LIdealβ€˜π‘…))
193, 11lidlss 20825 . . . . . . . 8 (𝑆 ∈ (LIdealβ€˜π‘…) β†’ 𝑆 βŠ† 𝑋)
2018, 19syl 17 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝑆 βŠ† 𝑋)
21 eqid 2732 . . . . . . . 8 (-gβ€˜π‘…) = (-gβ€˜π‘…)
223, 21, 4eqgabl 19696 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆 βŠ† 𝑋) β†’ (𝐢𝐸𝐴 ↔ (𝐢 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-gβ€˜π‘…)𝐢) ∈ 𝑆)))
2310, 20, 22syl2an2r 683 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐢𝐸𝐴 ↔ (𝐢 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-gβ€˜π‘…)𝐢) ∈ 𝑆)))
248, 23mpbid 231 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐢 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴(-gβ€˜π‘…)𝐢) ∈ 𝑆))
2524simp2d 1143 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝐴 ∈ 𝑋)
26 simprr 771 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝐡𝐸𝐷)
273, 21, 4eqgabl 19696 . . . . . . 7 ((𝑅 ∈ Abel ∧ 𝑆 βŠ† 𝑋) β†’ (𝐡𝐸𝐷 ↔ (𝐡 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-gβ€˜π‘…)𝐡) ∈ 𝑆)))
2810, 20, 27syl2an2r 683 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐡𝐸𝐷 ↔ (𝐡 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-gβ€˜π‘…)𝐡) ∈ 𝑆)))
2926, 28mpbid 231 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐡 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ∧ (𝐷(-gβ€˜π‘…)𝐡) ∈ 𝑆))
3029simp1d 1142 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝐡 ∈ 𝑋)
31 2idlcpblrng.t . . . . 5 Β· = (.rβ€˜π‘…)
323, 31rngcl 46649 . . . 4 ((𝑅 ∈ Rng ∧ 𝐴 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐴 Β· 𝐡) ∈ 𝑋)
331, 25, 30, 32syl3anc 1371 . . 3 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐴 Β· 𝐡) ∈ 𝑋)
3424simp1d 1142 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝐢 ∈ 𝑋)
3529simp2d 1143 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝐷 ∈ 𝑋)
363, 31rngcl 46649 . . . 4 ((𝑅 ∈ Rng ∧ 𝐢 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋) β†’ (𝐢 Β· 𝐷) ∈ 𝑋)
371, 34, 35, 36syl3anc 1371 . . 3 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐢 Β· 𝐷) ∈ 𝑋)
38 rnggrp 46640 . . . . . . 7 (𝑅 ∈ Rng β†’ 𝑅 ∈ Grp)
39383ad2ant1 1133 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) β†’ 𝑅 ∈ Grp)
4039adantr 481 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝑅 ∈ Grp)
413, 31rngcl 46649 . . . . . 6 ((𝑅 ∈ Rng ∧ 𝐢 ∈ 𝑋 ∧ 𝐡 ∈ 𝑋) β†’ (𝐢 Β· 𝐡) ∈ 𝑋)
421, 34, 30, 41syl3anc 1371 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐢 Β· 𝐡) ∈ 𝑋)
433, 21grpnnncan2 18916 . . . . 5 ((𝑅 ∈ Grp ∧ ((𝐢 Β· 𝐷) ∈ 𝑋 ∧ (𝐴 Β· 𝐡) ∈ 𝑋 ∧ (𝐢 Β· 𝐡) ∈ 𝑋)) β†’ (((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐢 Β· 𝐡))(-gβ€˜π‘…)((𝐴 Β· 𝐡)(-gβ€˜π‘…)(𝐢 Β· 𝐡))) = ((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐴 Β· 𝐡)))
4440, 37, 33, 42, 43syl13anc 1372 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐢 Β· 𝐡))(-gβ€˜π‘…)((𝐴 Β· 𝐡)(-gβ€˜π‘…)(𝐢 Β· 𝐡))) = ((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐴 Β· 𝐡)))
453, 31, 21, 1, 34, 35, 30rngsubdi 46656 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐢 Β· (𝐷(-gβ€˜π‘…)𝐡)) = ((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐢 Β· 𝐡)))
46 eqid 2732 . . . . . . . . . 10 (0gβ€˜π‘…) = (0gβ€˜π‘…)
4746subg0cl 19008 . . . . . . . . 9 (𝑆 ∈ (SubGrpβ€˜π‘…) β†’ (0gβ€˜π‘…) ∈ 𝑆)
48473ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) β†’ (0gβ€˜π‘…) ∈ 𝑆)
4948adantr 481 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (0gβ€˜π‘…) ∈ 𝑆)
5029simp3d 1144 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐷(-gβ€˜π‘…)𝐡) ∈ 𝑆)
5146, 3, 31, 11rnglidlmcl 46732 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ (LIdealβ€˜π‘…) ∧ (0gβ€˜π‘…) ∈ 𝑆) ∧ (𝐢 ∈ 𝑋 ∧ (𝐷(-gβ€˜π‘…)𝐡) ∈ 𝑆)) β†’ (𝐢 Β· (𝐷(-gβ€˜π‘…)𝐡)) ∈ 𝑆)
521, 18, 49, 34, 50, 51syl32anc 1378 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐢 Β· (𝐷(-gβ€˜π‘…)𝐡)) ∈ 𝑆)
5345, 52eqeltrrd 2834 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ ((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐢 Β· 𝐡)) ∈ 𝑆)
54 eqid 2732 . . . . . . . 8 (.rβ€˜(opprβ€˜π‘…)) = (.rβ€˜(opprβ€˜π‘…))
553, 31, 12, 54opprmul 20145 . . . . . . 7 (𝐡(.rβ€˜(opprβ€˜π‘…))(𝐴(-gβ€˜π‘…)𝐢)) = ((𝐴(-gβ€˜π‘…)𝐢) Β· 𝐡)
563, 31, 21, 1, 25, 34, 30rngsubdir 46657 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ ((𝐴(-gβ€˜π‘…)𝐢) Β· 𝐡) = ((𝐴 Β· 𝐡)(-gβ€˜π‘…)(𝐢 Β· 𝐡)))
5755, 56eqtrid 2784 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐡(.rβ€˜(opprβ€˜π‘…))(𝐴(-gβ€˜π‘…)𝐢)) = ((𝐴 Β· 𝐡)(-gβ€˜π‘…)(𝐢 Β· 𝐡)))
5812opprrng 46660 . . . . . . . . 9 (𝑅 ∈ Rng β†’ (opprβ€˜π‘…) ∈ Rng)
59583ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) β†’ (opprβ€˜π‘…) ∈ Rng)
6059adantr 481 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (opprβ€˜π‘…) ∈ Rng)
6115simprbi 497 . . . . . . . . 9 (𝑆 ∈ 𝐼 β†’ 𝑆 ∈ (LIdealβ€˜(opprβ€˜π‘…)))
62613ad2ant2 1134 . . . . . . . 8 ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) β†’ 𝑆 ∈ (LIdealβ€˜(opprβ€˜π‘…)))
6362adantr 481 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ 𝑆 ∈ (LIdealβ€˜(opprβ€˜π‘…)))
6424simp3d 1144 . . . . . . 7 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐴(-gβ€˜π‘…)𝐢) ∈ 𝑆)
6512, 46oppr0 20155 . . . . . . . 8 (0gβ€˜π‘…) = (0gβ€˜(opprβ€˜π‘…))
6612, 3opprbas 20149 . . . . . . . 8 𝑋 = (Baseβ€˜(opprβ€˜π‘…))
6765, 66, 54, 13rnglidlmcl 46732 . . . . . . 7 ((((opprβ€˜π‘…) ∈ Rng ∧ 𝑆 ∈ (LIdealβ€˜(opprβ€˜π‘…)) ∧ (0gβ€˜π‘…) ∈ 𝑆) ∧ (𝐡 ∈ 𝑋 ∧ (𝐴(-gβ€˜π‘…)𝐢) ∈ 𝑆)) β†’ (𝐡(.rβ€˜(opprβ€˜π‘…))(𝐴(-gβ€˜π‘…)𝐢)) ∈ 𝑆)
6860, 63, 49, 30, 64, 67syl32anc 1378 . . . . . 6 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐡(.rβ€˜(opprβ€˜π‘…))(𝐴(-gβ€˜π‘…)𝐢)) ∈ 𝑆)
6957, 68eqeltrrd 2834 . . . . 5 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ ((𝐴 Β· 𝐡)(-gβ€˜π‘…)(𝐢 Β· 𝐡)) ∈ 𝑆)
7021subgsubcl 19011 . . . . 5 ((𝑆 ∈ (SubGrpβ€˜π‘…) ∧ ((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐢 Β· 𝐡)) ∈ 𝑆 ∧ ((𝐴 Β· 𝐡)(-gβ€˜π‘…)(𝐢 Β· 𝐡)) ∈ 𝑆) β†’ (((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐢 Β· 𝐡))(-gβ€˜π‘…)((𝐴 Β· 𝐡)(-gβ€˜π‘…)(𝐢 Β· 𝐡))) ∈ 𝑆)
712, 53, 69, 70syl3anc 1371 . . . 4 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐢 Β· 𝐡))(-gβ€˜π‘…)((𝐴 Β· 𝐡)(-gβ€˜π‘…)(𝐢 Β· 𝐡))) ∈ 𝑆)
7244, 71eqeltrrd 2834 . . 3 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ ((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐴 Β· 𝐡)) ∈ 𝑆)
733, 21, 4eqgabl 19696 . . . 4 ((𝑅 ∈ Abel ∧ 𝑆 βŠ† 𝑋) β†’ ((𝐴 Β· 𝐡)𝐸(𝐢 Β· 𝐷) ↔ ((𝐴 Β· 𝐡) ∈ 𝑋 ∧ (𝐢 Β· 𝐷) ∈ 𝑋 ∧ ((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐴 Β· 𝐡)) ∈ 𝑆)))
7410, 20, 73syl2an2r 683 . . 3 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ ((𝐴 Β· 𝐡)𝐸(𝐢 Β· 𝐷) ↔ ((𝐴 Β· 𝐡) ∈ 𝑋 ∧ (𝐢 Β· 𝐷) ∈ 𝑋 ∧ ((𝐢 Β· 𝐷)(-gβ€˜π‘…)(𝐴 Β· 𝐡)) ∈ 𝑆)))
7533, 37, 72, 74mpbir3and 1342 . 2 (((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) ∧ (𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷)) β†’ (𝐴 Β· 𝐡)𝐸(𝐢 Β· 𝐷))
7675ex 413 1 ((𝑅 ∈ Rng ∧ 𝑆 ∈ 𝐼 ∧ 𝑆 ∈ (SubGrpβ€˜π‘…)) β†’ ((𝐴𝐸𝐢 ∧ 𝐡𝐸𝐷) β†’ (𝐴 Β· 𝐡)𝐸(𝐢 Β· 𝐷)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βŠ† wss 3947   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405   Er wer 8696  Basecbs 17140  .rcmulr 17194  0gc0g 17381  Grpcgrp 18815  -gcsg 18817  SubGrpcsubg 18994   ~QG cqg 18996  Abelcabl 19643  opprcoppr 20141  LIdealclidl 20775  2Idealc2idl 20848  Rngcrng 46634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-eqg 18999  df-cmn 19644  df-abl 19645  df-mgp 19982  df-oppr 20142  df-lss 20535  df-sra 20777  df-rgmod 20778  df-lidl 20779  df-2idl 20849  df-rng 46635
This theorem is referenced by:  qus2idrng  46748  qusmulrng  46751
  Copyright terms: Public domain W3C validator