Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-tfslim Structured version   Visualization version   GIF version

Theorem rp-tfslim 43326
Description: The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.)
Assertion
Ref Expression
rp-tfslim (𝐴 Fn 𝐵 𝑥𝐵 (𝐴𝑥) = ran 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rp-tfslim
StepHypRef Expression
1 fvex 6835 . . 3 (𝐴𝑥) ∈ V
21dfiun3 5911 . 2 𝑥𝐵 (𝐴𝑥) = ran (𝑥𝐵 ↦ (𝐴𝑥))
3 dffn5 6881 . . . . 5 (𝐴 Fn 𝐵𝐴 = (𝑥𝐵 ↦ (𝐴𝑥)))
43biimpi 216 . . . 4 (𝐴 Fn 𝐵𝐴 = (𝑥𝐵 ↦ (𝐴𝑥)))
54rneqd 5880 . . 3 (𝐴 Fn 𝐵 → ran 𝐴 = ran (𝑥𝐵 ↦ (𝐴𝑥)))
65unieqd 4871 . 2 (𝐴 Fn 𝐵 ran 𝐴 = ran (𝑥𝐵 ↦ (𝐴𝑥)))
72, 6eqtr4id 2783 1 (𝐴 Fn 𝐵 𝑥𝐵 (𝐴𝑥) = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   cuni 4858   ciun 4941  cmpt 5173  ran crn 5620   Fn wfn 6477  cfv 6482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator