| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-tfslim | Structured version Visualization version GIF version | ||
| Description: The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.) |
| Ref | Expression |
|---|---|
| rp-tfslim | ⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . 3 ⊢ (𝐴‘𝑥) ∈ V | |
| 2 | 1 | dfiun3 5911 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥)) |
| 3 | dffn5 6881 | . . . . 5 ⊢ (𝐴 Fn 𝐵 ↔ 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) | |
| 4 | 3 | biimpi 216 | . . . 4 ⊢ (𝐴 Fn 𝐵 → 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 5 | 4 | rneqd 5880 | . . 3 ⊢ (𝐴 Fn 𝐵 → ran 𝐴 = ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 6 | 5 | unieqd 4871 | . 2 ⊢ (𝐴 Fn 𝐵 → ∪ ran 𝐴 = ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 7 | 2, 6 | eqtr4id 2783 | 1 ⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cuni 4858 ∪ ciun 4941 ↦ cmpt 5173 ran crn 5620 Fn wfn 6477 ‘cfv 6482 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-fv 6490 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |