Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-tfslim Structured version   Visualization version   GIF version

Theorem rp-tfslim 43324
Description: The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.)
Assertion
Ref Expression
rp-tfslim (𝐴 Fn 𝐵 𝑥𝐵 (𝐴𝑥) = ran 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rp-tfslim
StepHypRef Expression
1 fvex 6888 . . 3 (𝐴𝑥) ∈ V
21dfiun3 5949 . 2 𝑥𝐵 (𝐴𝑥) = ran (𝑥𝐵 ↦ (𝐴𝑥))
3 dffn5 6936 . . . . 5 (𝐴 Fn 𝐵𝐴 = (𝑥𝐵 ↦ (𝐴𝑥)))
43biimpi 216 . . . 4 (𝐴 Fn 𝐵𝐴 = (𝑥𝐵 ↦ (𝐴𝑥)))
54rneqd 5918 . . 3 (𝐴 Fn 𝐵 → ran 𝐴 = ran (𝑥𝐵 ↦ (𝐴𝑥)))
65unieqd 4896 . 2 (𝐴 Fn 𝐵 ran 𝐴 = ran (𝑥𝐵 ↦ (𝐴𝑥)))
72, 6eqtr4id 2789 1 (𝐴 Fn 𝐵 𝑥𝐵 (𝐴𝑥) = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   cuni 4883   ciun 4967  cmpt 5201  ran crn 5655   Fn wfn 6525  cfv 6530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-iota 6483  df-fun 6532  df-fn 6533  df-fv 6538
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator