| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-tfslim | Structured version Visualization version GIF version | ||
| Description: The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.) |
| Ref | Expression |
|---|---|
| rp-tfslim | ⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6919 | . . 3 ⊢ (𝐴‘𝑥) ∈ V | |
| 2 | 1 | dfiun3 5980 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥)) |
| 3 | dffn5 6967 | . . . . 5 ⊢ (𝐴 Fn 𝐵 ↔ 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) | |
| 4 | 3 | biimpi 216 | . . . 4 ⊢ (𝐴 Fn 𝐵 → 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 5 | 4 | rneqd 5949 | . . 3 ⊢ (𝐴 Fn 𝐵 → ran 𝐴 = ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 6 | 5 | unieqd 4920 | . 2 ⊢ (𝐴 Fn 𝐵 → ∪ ran 𝐴 = ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 7 | 2, 6 | eqtr4id 2796 | 1 ⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cuni 4907 ∪ ciun 4991 ↦ cmpt 5225 ran crn 5686 Fn wfn 6556 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |