| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-tfslim | Structured version Visualization version GIF version | ||
| Description: The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.) |
| Ref | Expression |
|---|---|
| rp-tfslim | ⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6888 | . . 3 ⊢ (𝐴‘𝑥) ∈ V | |
| 2 | 1 | dfiun3 5949 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥)) |
| 3 | dffn5 6936 | . . . . 5 ⊢ (𝐴 Fn 𝐵 ↔ 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) | |
| 4 | 3 | biimpi 216 | . . . 4 ⊢ (𝐴 Fn 𝐵 → 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 5 | 4 | rneqd 5918 | . . 3 ⊢ (𝐴 Fn 𝐵 → ran 𝐴 = ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 6 | 5 | unieqd 4896 | . 2 ⊢ (𝐴 Fn 𝐵 → ∪ ran 𝐴 = ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
| 7 | 2, 6 | eqtr4id 2789 | 1 ⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∪ cuni 4883 ∪ ciun 4967 ↦ cmpt 5201 ran crn 5655 Fn wfn 6525 ‘cfv 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fn 6533 df-fv 6538 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |