Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-tfslim Structured version   Visualization version   GIF version

Theorem rp-tfslim 42406
Description: The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.)
Assertion
Ref Expression
rp-tfslim (𝐴 Fn 𝐵 𝑥𝐵 (𝐴𝑥) = ran 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rp-tfslim
StepHypRef Expression
1 fvex 6904 . . 3 (𝐴𝑥) ∈ V
21dfiun3 5965 . 2 𝑥𝐵 (𝐴𝑥) = ran (𝑥𝐵 ↦ (𝐴𝑥))
3 dffn5 6950 . . . . 5 (𝐴 Fn 𝐵𝐴 = (𝑥𝐵 ↦ (𝐴𝑥)))
43biimpi 215 . . . 4 (𝐴 Fn 𝐵𝐴 = (𝑥𝐵 ↦ (𝐴𝑥)))
54rneqd 5937 . . 3 (𝐴 Fn 𝐵 → ran 𝐴 = ran (𝑥𝐵 ↦ (𝐴𝑥)))
65unieqd 4922 . 2 (𝐴 Fn 𝐵 ran 𝐴 = ran (𝑥𝐵 ↦ (𝐴𝑥)))
72, 6eqtr4id 2790 1 (𝐴 Fn 𝐵 𝑥𝐵 (𝐴𝑥) = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   cuni 4908   ciun 4997  cmpt 5231  ran crn 5677   Fn wfn 6538  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator