Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-tfslim Structured version   Visualization version   GIF version

Theorem rp-tfslim 43315
Description: The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.)
Assertion
Ref Expression
rp-tfslim (𝐴 Fn 𝐵 𝑥𝐵 (𝐴𝑥) = ran 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem rp-tfslim
StepHypRef Expression
1 fvex 6853 . . 3 (𝐴𝑥) ∈ V
21dfiun3 5922 . 2 𝑥𝐵 (𝐴𝑥) = ran (𝑥𝐵 ↦ (𝐴𝑥))
3 dffn5 6901 . . . . 5 (𝐴 Fn 𝐵𝐴 = (𝑥𝐵 ↦ (𝐴𝑥)))
43biimpi 216 . . . 4 (𝐴 Fn 𝐵𝐴 = (𝑥𝐵 ↦ (𝐴𝑥)))
54rneqd 5891 . . 3 (𝐴 Fn 𝐵 → ran 𝐴 = ran (𝑥𝐵 ↦ (𝐴𝑥)))
65unieqd 4880 . 2 (𝐴 Fn 𝐵 ran 𝐴 = ran (𝑥𝐵 ↦ (𝐴𝑥)))
72, 6eqtr4id 2783 1 (𝐴 Fn 𝐵 𝑥𝐵 (𝐴𝑥) = ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   cuni 4867   ciun 4951  cmpt 5183  ran crn 5632   Fn wfn 6494  cfv 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator