![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rp-tfslim | Structured version Visualization version GIF version |
Description: The limit of a sequence of ordinals is the union of its range. (Contributed by RP, 1-Mar-2025.) |
Ref | Expression |
---|---|
rp-tfslim | ⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6919 | . . 3 ⊢ (𝐴‘𝑥) ∈ V | |
2 | 1 | dfiun3 5982 | . 2 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥)) |
3 | dffn5 6966 | . . . . 5 ⊢ (𝐴 Fn 𝐵 ↔ 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) | |
4 | 3 | biimpi 216 | . . . 4 ⊢ (𝐴 Fn 𝐵 → 𝐴 = (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
5 | 4 | rneqd 5951 | . . 3 ⊢ (𝐴 Fn 𝐵 → ran 𝐴 = ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
6 | 5 | unieqd 4924 | . 2 ⊢ (𝐴 Fn 𝐵 → ∪ ran 𝐴 = ∪ ran (𝑥 ∈ 𝐵 ↦ (𝐴‘𝑥))) |
7 | 2, 6 | eqtr4id 2793 | 1 ⊢ (𝐴 Fn 𝐵 → ∪ 𝑥 ∈ 𝐵 (𝐴‘𝑥) = ∪ ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∪ cuni 4911 ∪ ciun 4995 ↦ cmpt 5230 ran crn 5689 Fn wfn 6557 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-fv 6570 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |