Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsnfin Structured version   Visualization version   GIF version

Theorem tfsnfin 43335
Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.)
Assertion
Ref Expression
tfsnfin ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵))

Proof of Theorem tfsnfin
StepHypRef Expression
1 fnfun 6582 . . . . . 6 (𝐴 Fn 𝐵 → Fun 𝐴)
2 fundmfibi 9226 . . . . . 6 (Fun 𝐴 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin))
31, 2syl 17 . . . . 5 (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin))
4 fndm 6585 . . . . . 6 (𝐴 Fn 𝐵 → dom 𝐴 = 𝐵)
54eleq1d 2813 . . . . 5 (𝐴 Fn 𝐵 → (dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
63, 5bitrd 279 . . . 4 (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
7 onfin 9129 . . . 4 (𝐵 ∈ On → (𝐵 ∈ Fin ↔ 𝐵 ∈ ω))
86, 7sylan9bb 509 . . 3 ((𝐴 Fn 𝐵𝐵 ∈ On) → (𝐴 ∈ Fin ↔ 𝐵 ∈ ω))
98notbid 318 . 2 ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω))
10 omelon 9542 . . 3 ω ∈ On
11 simpr 484 . . 3 ((𝐴 Fn 𝐵𝐵 ∈ On) → 𝐵 ∈ On)
12 ontri1 6341 . . 3 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
1310, 11, 12sylancr 587 . 2 ((𝐴 Fn 𝐵𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
149, 13bitr4d 282 1 ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wss 3903  dom cdm 5619  Oncon0 6307  Fun wfun 6476   Fn wfn 6477  ωcom 7799  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1st 7924  df-2nd 7925  df-1o 8388  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator