![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tfsnfin | Structured version Visualization version GIF version |
Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.) |
Ref | Expression |
---|---|
tfsnfin | ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6676 | . . . . . 6 ⊢ (𝐴 Fn 𝐵 → Fun 𝐴) | |
2 | fundmfibi 9383 | . . . . . 6 ⊢ (Fun 𝐴 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin)) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin)) |
4 | fndm 6679 | . . . . . 6 ⊢ (𝐴 Fn 𝐵 → dom 𝐴 = 𝐵) | |
5 | 4 | eleq1d 2826 | . . . . 5 ⊢ (𝐴 Fn 𝐵 → (dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
6 | 3, 5 | bitrd 279 | . . . 4 ⊢ (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
7 | onfin 9274 | . . . 4 ⊢ (𝐵 ∈ On → (𝐵 ∈ Fin ↔ 𝐵 ∈ ω)) | |
8 | 6, 7 | sylan9bb 509 | . . 3 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (𝐴 ∈ Fin ↔ 𝐵 ∈ ω)) |
9 | 8 | notbid 318 | . 2 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω)) |
10 | omelon 9693 | . . 3 ⊢ ω ∈ On | |
11 | simpr 484 | . . 3 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → 𝐵 ∈ On) | |
12 | ontri1 6426 | . . 3 ⊢ ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) | |
13 | 10, 11, 12 | sylancr 587 | . 2 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) |
14 | 9, 13 | bitr4d 282 | 1 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3966 dom cdm 5693 Oncon0 6392 Fun wfun 6563 Fn wfn 6564 ωcom 7894 Fincfn 8993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-inf2 9688 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-om 7895 df-1st 8022 df-2nd 8023 df-1o 8514 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |