Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsnfin Structured version   Visualization version   GIF version

Theorem tfsnfin 43334
Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.)
Assertion
Ref Expression
tfsnfin ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵))

Proof of Theorem tfsnfin
StepHypRef Expression
1 fnfun 6620 . . . . . 6 (𝐴 Fn 𝐵 → Fun 𝐴)
2 fundmfibi 9293 . . . . . 6 (Fun 𝐴 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin))
31, 2syl 17 . . . . 5 (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin))
4 fndm 6623 . . . . . 6 (𝐴 Fn 𝐵 → dom 𝐴 = 𝐵)
54eleq1d 2814 . . . . 5 (𝐴 Fn 𝐵 → (dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
63, 5bitrd 279 . . . 4 (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
7 onfin 9184 . . . 4 (𝐵 ∈ On → (𝐵 ∈ Fin ↔ 𝐵 ∈ ω))
86, 7sylan9bb 509 . . 3 ((𝐴 Fn 𝐵𝐵 ∈ On) → (𝐴 ∈ Fin ↔ 𝐵 ∈ ω))
98notbid 318 . 2 ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω))
10 omelon 9605 . . 3 ω ∈ On
11 simpr 484 . . 3 ((𝐴 Fn 𝐵𝐵 ∈ On) → 𝐵 ∈ On)
12 ontri1 6368 . . 3 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
1310, 11, 12sylancr 587 . 2 ((𝐴 Fn 𝐵𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
149, 13bitr4d 282 1 ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wss 3916  dom cdm 5640  Oncon0 6334  Fun wfun 6507   Fn wfn 6508  ωcom 7844  Fincfn 8920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-om 7845  df-1st 7970  df-2nd 7971  df-1o 8436  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator