Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsnfin Structured version   Visualization version   GIF version

Theorem tfsnfin 43341
Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.)
Assertion
Ref Expression
tfsnfin ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵))

Proof of Theorem tfsnfin
StepHypRef Expression
1 fnfun 6618 . . . . . 6 (𝐴 Fn 𝐵 → Fun 𝐴)
2 fundmfibi 9287 . . . . . 6 (Fun 𝐴 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin))
31, 2syl 17 . . . . 5 (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin))
4 fndm 6621 . . . . . 6 (𝐴 Fn 𝐵 → dom 𝐴 = 𝐵)
54eleq1d 2813 . . . . 5 (𝐴 Fn 𝐵 → (dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
63, 5bitrd 279 . . . 4 (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
7 onfin 9179 . . . 4 (𝐵 ∈ On → (𝐵 ∈ Fin ↔ 𝐵 ∈ ω))
86, 7sylan9bb 509 . . 3 ((𝐴 Fn 𝐵𝐵 ∈ On) → (𝐴 ∈ Fin ↔ 𝐵 ∈ ω))
98notbid 318 . 2 ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω))
10 omelon 9599 . . 3 ω ∈ On
11 simpr 484 . . 3 ((𝐴 Fn 𝐵𝐵 ∈ On) → 𝐵 ∈ On)
12 ontri1 6366 . . 3 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
1310, 11, 12sylancr 587 . 2 ((𝐴 Fn 𝐵𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
149, 13bitr4d 282 1 ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wss 3914  dom cdm 5638  Oncon0 6332  Fun wfun 6505   Fn wfn 6506  ωcom 7842  Fincfn 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator