Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfsnfin Structured version   Visualization version   GIF version

Theorem tfsnfin 43334
Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.)
Assertion
Ref Expression
tfsnfin ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵))

Proof of Theorem tfsnfin
StepHypRef Expression
1 fnfun 6600 . . . . . 6 (𝐴 Fn 𝐵 → Fun 𝐴)
2 fundmfibi 9263 . . . . . 6 (Fun 𝐴 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin))
31, 2syl 17 . . . . 5 (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin))
4 fndm 6603 . . . . . 6 (𝐴 Fn 𝐵 → dom 𝐴 = 𝐵)
54eleq1d 2813 . . . . 5 (𝐴 Fn 𝐵 → (dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
63, 5bitrd 279 . . . 4 (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin))
7 onfin 9156 . . . 4 (𝐵 ∈ On → (𝐵 ∈ Fin ↔ 𝐵 ∈ ω))
86, 7sylan9bb 509 . . 3 ((𝐴 Fn 𝐵𝐵 ∈ On) → (𝐴 ∈ Fin ↔ 𝐵 ∈ ω))
98notbid 318 . 2 ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω))
10 omelon 9575 . . 3 ω ∈ On
11 simpr 484 . . 3 ((𝐴 Fn 𝐵𝐵 ∈ On) → 𝐵 ∈ On)
12 ontri1 6354 . . 3 ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
1310, 11, 12sylancr 587 . 2 ((𝐴 Fn 𝐵𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω))
149, 13bitr4d 282 1 ((𝐴 Fn 𝐵𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wss 3911  dom cdm 5631  Oncon0 6320  Fun wfun 6493   Fn wfn 6494  ωcom 7822  Fincfn 8895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator