| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tfsnfin | Structured version Visualization version GIF version | ||
| Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.) |
| Ref | Expression |
|---|---|
| tfsnfin | ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6648 | . . . . . 6 ⊢ (𝐴 Fn 𝐵 → Fun 𝐴) | |
| 2 | fundmfibi 9358 | . . . . . 6 ⊢ (Fun 𝐴 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin)) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin)) |
| 4 | fndm 6651 | . . . . . 6 ⊢ (𝐴 Fn 𝐵 → dom 𝐴 = 𝐵) | |
| 5 | 4 | eleq1d 2818 | . . . . 5 ⊢ (𝐴 Fn 𝐵 → (dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| 6 | 3, 5 | bitrd 279 | . . . 4 ⊢ (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| 7 | onfin 9249 | . . . 4 ⊢ (𝐵 ∈ On → (𝐵 ∈ Fin ↔ 𝐵 ∈ ω)) | |
| 8 | 6, 7 | sylan9bb 509 | . . 3 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (𝐴 ∈ Fin ↔ 𝐵 ∈ ω)) |
| 9 | 8 | notbid 318 | . 2 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω)) |
| 10 | omelon 9668 | . . 3 ⊢ ω ∈ On | |
| 11 | simpr 484 | . . 3 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → 𝐵 ∈ On) | |
| 12 | ontri1 6397 | . . 3 ⊢ ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) | |
| 13 | 10, 11, 12 | sylancr 587 | . 2 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) |
| 14 | 9, 13 | bitr4d 282 | 1 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3931 dom cdm 5665 Oncon0 6363 Fun wfun 6535 Fn wfn 6536 ωcom 7869 Fincfn 8967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-inf2 9663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-om 7870 df-1st 7996 df-2nd 7997 df-1o 8488 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |