| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tfsnfin | Structured version Visualization version GIF version | ||
| Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.) |
| Ref | Expression |
|---|---|
| tfsnfin | ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6620 | . . . . . 6 ⊢ (𝐴 Fn 𝐵 → Fun 𝐴) | |
| 2 | fundmfibi 9293 | . . . . . 6 ⊢ (Fun 𝐴 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin)) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin)) |
| 4 | fndm 6623 | . . . . . 6 ⊢ (𝐴 Fn 𝐵 → dom 𝐴 = 𝐵) | |
| 5 | 4 | eleq1d 2814 | . . . . 5 ⊢ (𝐴 Fn 𝐵 → (dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| 6 | 3, 5 | bitrd 279 | . . . 4 ⊢ (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| 7 | onfin 9184 | . . . 4 ⊢ (𝐵 ∈ On → (𝐵 ∈ Fin ↔ 𝐵 ∈ ω)) | |
| 8 | 6, 7 | sylan9bb 509 | . . 3 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (𝐴 ∈ Fin ↔ 𝐵 ∈ ω)) |
| 9 | 8 | notbid 318 | . 2 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω)) |
| 10 | omelon 9605 | . . 3 ⊢ ω ∈ On | |
| 11 | simpr 484 | . . 3 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → 𝐵 ∈ On) | |
| 12 | ontri1 6368 | . . 3 ⊢ ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) | |
| 13 | 10, 11, 12 | sylancr 587 | . 2 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) |
| 14 | 9, 13 | bitr4d 282 | 1 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3916 dom cdm 5640 Oncon0 6334 Fun wfun 6507 Fn wfn 6508 ωcom 7844 Fincfn 8920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-om 7845 df-1st 7970 df-2nd 7971 df-1o 8436 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |