| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tfsnfin | Structured version Visualization version GIF version | ||
| Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.) |
| Ref | Expression |
|---|---|
| tfsnfin | ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 6618 | . . . . . 6 ⊢ (𝐴 Fn 𝐵 → Fun 𝐴) | |
| 2 | fundmfibi 9287 | . . . . . 6 ⊢ (Fun 𝐴 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin)) | |
| 3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin)) |
| 4 | fndm 6621 | . . . . . 6 ⊢ (𝐴 Fn 𝐵 → dom 𝐴 = 𝐵) | |
| 5 | 4 | eleq1d 2813 | . . . . 5 ⊢ (𝐴 Fn 𝐵 → (dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| 6 | 3, 5 | bitrd 279 | . . . 4 ⊢ (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
| 7 | onfin 9179 | . . . 4 ⊢ (𝐵 ∈ On → (𝐵 ∈ Fin ↔ 𝐵 ∈ ω)) | |
| 8 | 6, 7 | sylan9bb 509 | . . 3 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (𝐴 ∈ Fin ↔ 𝐵 ∈ ω)) |
| 9 | 8 | notbid 318 | . 2 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω)) |
| 10 | omelon 9599 | . . 3 ⊢ ω ∈ On | |
| 11 | simpr 484 | . . 3 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → 𝐵 ∈ On) | |
| 12 | ontri1 6366 | . . 3 ⊢ ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) | |
| 13 | 10, 11, 12 | sylancr 587 | . 2 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) |
| 14 | 9, 13 | bitr4d 282 | 1 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 dom cdm 5638 Oncon0 6332 Fun wfun 6505 Fn wfn 6506 ωcom 7842 Fincfn 8918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-om 7843 df-1st 7968 df-2nd 7969 df-1o 8434 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |