![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tfsnfin | Structured version Visualization version GIF version |
Description: A transfinite sequence is infinite iff its domain is greater than or equal to omega. Theorem 5 in Grzegorz Bancerek, "Epsilon Numbers and Cantor Normal Form", Formalized Mathematics, Vol. 17, No. 4, Pages 249–256, 2009. DOI: 10.2478/v10037-009-0032-8 (Contributed by RP, 1-Mar-2025.) |
Ref | Expression |
---|---|
tfsnfin | ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 6649 | . . . . . 6 ⊢ (𝐴 Fn 𝐵 → Fun 𝐴) | |
2 | fundmfibi 9333 | . . . . . 6 ⊢ (Fun 𝐴 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin)) | |
3 | 1, 2 | syl 17 | . . . . 5 ⊢ (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ dom 𝐴 ∈ Fin)) |
4 | fndm 6652 | . . . . . 6 ⊢ (𝐴 Fn 𝐵 → dom 𝐴 = 𝐵) | |
5 | 4 | eleq1d 2818 | . . . . 5 ⊢ (𝐴 Fn 𝐵 → (dom 𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
6 | 3, 5 | bitrd 278 | . . . 4 ⊢ (𝐴 Fn 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) |
7 | onfin 9232 | . . . 4 ⊢ (𝐵 ∈ On → (𝐵 ∈ Fin ↔ 𝐵 ∈ ω)) | |
8 | 6, 7 | sylan9bb 510 | . . 3 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (𝐴 ∈ Fin ↔ 𝐵 ∈ ω)) |
9 | 8 | notbid 317 | . 2 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ¬ 𝐵 ∈ ω)) |
10 | omelon 9643 | . . 3 ⊢ ω ∈ On | |
11 | simpr 485 | . . 3 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → 𝐵 ∈ On) | |
12 | ontri1 6398 | . . 3 ⊢ ((ω ∈ On ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) | |
13 | 10, 11, 12 | sylancr 587 | . 2 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (ω ⊆ 𝐵 ↔ ¬ 𝐵 ∈ ω)) |
14 | 9, 13 | bitr4d 281 | 1 ⊢ ((𝐴 Fn 𝐵 ∧ 𝐵 ∈ On) → (¬ 𝐴 ∈ Fin ↔ ω ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3948 dom cdm 5676 Oncon0 6364 Fun wfun 6537 Fn wfn 6538 ωcom 7857 Fincfn 8941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-om 7858 df-1st 7977 df-2nd 7978 df-1o 8468 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |