![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrrvv | Structured version Visualization version GIF version |
Description: Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
Ref | Expression |
---|---|
isrrvv | ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | 1 | rrvmbfm 34424 | . 2 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
3 | domprobsiga 34393 | . . . 4 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
5 | brsigarn 34165 | . . . 4 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
6 | elrnsiga 34107 | . . . 4 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
7 | 5, 6 | mp1i 13 | . . 3 ⊢ (𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
8 | 4, 7 | ismbfm 34232 | . 2 ⊢ (𝜑 → (𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ) ↔ (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
9 | unibrsiga 34167 | . . . . . 6 ⊢ ∪ 𝔅ℝ = ℝ | |
10 | 9 | oveq1i 7441 | . . . . 5 ⊢ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) = (ℝ ↑m ∪ dom 𝑃) |
11 | 10 | eleq2i 2831 | . . . 4 ⊢ (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ↔ 𝑋 ∈ (ℝ ↑m ∪ dom 𝑃)) |
12 | reex 11244 | . . . . 5 ⊢ ℝ ∈ V | |
13 | 4 | uniexd 7761 | . . . . 5 ⊢ (𝜑 → ∪ dom 𝑃 ∈ V) |
14 | elmapg 8878 | . . . . 5 ⊢ ((ℝ ∈ V ∧ ∪ dom 𝑃 ∈ V) → (𝑋 ∈ (ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) | |
15 | 12, 13, 14 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
16 | 11, 15 | bitrid 283 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
17 | 16 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
18 | 2, 8, 17 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 Vcvv 3478 ∪ cuni 4912 ◡ccnv 5688 dom cdm 5689 ran crn 5690 “ cima 5692 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑m cmap 8865 ℝcr 11152 sigAlgebracsiga 34089 𝔅ℝcbrsiga 34162 MblFnMcmbfm 34230 Probcprb 34389 rRndVarcrrv 34422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-ioo 13388 df-topgen 17490 df-top 22916 df-bases 22969 df-esum 34009 df-siga 34090 df-sigagen 34120 df-brsiga 34163 df-meas 34177 df-mbfm 34231 df-prob 34390 df-rrv 34423 |
This theorem is referenced by: rrvvf 34426 rrvfinvima 34432 0rrv 34433 coinfliprv 34464 |
Copyright terms: Public domain | W3C validator |