| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isrrvv | Structured version Visualization version GIF version | ||
| Description: Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| Ref | Expression |
|---|---|
| isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| Ref | Expression |
|---|---|
| isrrvv | ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrrvv.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | 1 | rrvmbfm 34476 | . 2 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| 3 | domprobsiga 34445 | . . . 4 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
| 5 | brsigarn 34218 | . . . 4 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 6 | elrnsiga 34160 | . . . 4 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 7 | 5, 6 | mp1i 13 | . . 3 ⊢ (𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
| 8 | 4, 7 | ismbfm 34285 | . 2 ⊢ (𝜑 → (𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ) ↔ (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| 9 | unibrsiga 34220 | . . . . . 6 ⊢ ∪ 𝔅ℝ = ℝ | |
| 10 | 9 | oveq1i 7362 | . . . . 5 ⊢ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) = (ℝ ↑m ∪ dom 𝑃) |
| 11 | 10 | eleq2i 2825 | . . . 4 ⊢ (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ↔ 𝑋 ∈ (ℝ ↑m ∪ dom 𝑃)) |
| 12 | reex 11104 | . . . . 5 ⊢ ℝ ∈ V | |
| 13 | 4 | uniexd 7681 | . . . . 5 ⊢ (𝜑 → ∪ dom 𝑃 ∈ V) |
| 14 | elmapg 8769 | . . . . 5 ⊢ ((ℝ ∈ V ∧ ∪ dom 𝑃 ∈ V) → (𝑋 ∈ (ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
| 16 | 11, 15 | bitrid 283 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
| 17 | 16 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| 18 | 2, 8, 17 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ∪ cuni 4858 ◡ccnv 5618 dom cdm 5619 ran crn 5620 “ cima 5622 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 ℝcr 11012 sigAlgebracsiga 34142 𝔅ℝcbrsiga 34215 MblFnMcmbfm 34283 Probcprb 34441 rRndVarcrrv 34474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-pre-lttri 11087 ax-pre-lttrn 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-ioo 13251 df-topgen 17349 df-top 22810 df-bases 22862 df-esum 34062 df-siga 34143 df-sigagen 34173 df-brsiga 34216 df-meas 34230 df-mbfm 34284 df-prob 34442 df-rrv 34475 |
| This theorem is referenced by: rrvvf 34478 rrvfinvima 34484 0rrv 34485 coinfliprv 34517 |
| Copyright terms: Public domain | W3C validator |