| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isrrvv | Structured version Visualization version GIF version | ||
| Description: Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| Ref | Expression |
|---|---|
| isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| Ref | Expression |
|---|---|
| isrrvv | ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrrvv.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | 1 | rrvmbfm 34479 | . 2 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| 3 | domprobsiga 34448 | . . . 4 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
| 5 | brsigarn 34220 | . . . 4 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 6 | elrnsiga 34162 | . . . 4 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 7 | 5, 6 | mp1i 13 | . . 3 ⊢ (𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
| 8 | 4, 7 | ismbfm 34287 | . 2 ⊢ (𝜑 → (𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ) ↔ (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| 9 | unibrsiga 34222 | . . . . . 6 ⊢ ∪ 𝔅ℝ = ℝ | |
| 10 | 9 | oveq1i 7420 | . . . . 5 ⊢ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) = (ℝ ↑m ∪ dom 𝑃) |
| 11 | 10 | eleq2i 2827 | . . . 4 ⊢ (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ↔ 𝑋 ∈ (ℝ ↑m ∪ dom 𝑃)) |
| 12 | reex 11225 | . . . . 5 ⊢ ℝ ∈ V | |
| 13 | 4 | uniexd 7741 | . . . . 5 ⊢ (𝜑 → ∪ dom 𝑃 ∈ V) |
| 14 | elmapg 8858 | . . . . 5 ⊢ ((ℝ ∈ V ∧ ∪ dom 𝑃 ∈ V) → (𝑋 ∈ (ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
| 16 | 11, 15 | bitrid 283 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
| 17 | 16 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| 18 | 2, 8, 17 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 Vcvv 3464 ∪ cuni 4888 ◡ccnv 5658 dom cdm 5659 ran crn 5660 “ cima 5662 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 ℝcr 11133 sigAlgebracsiga 34144 𝔅ℝcbrsiga 34217 MblFnMcmbfm 34285 Probcprb 34444 rRndVarcrrv 34477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-pre-lttri 11208 ax-pre-lttrn 11209 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-ioo 13371 df-topgen 17462 df-top 22837 df-bases 22889 df-esum 34064 df-siga 34145 df-sigagen 34175 df-brsiga 34218 df-meas 34232 df-mbfm 34286 df-prob 34445 df-rrv 34478 |
| This theorem is referenced by: rrvvf 34481 rrvfinvima 34487 0rrv 34488 coinfliprv 34520 |
| Copyright terms: Public domain | W3C validator |