| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isrrvv | Structured version Visualization version GIF version | ||
| Description: Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
| Ref | Expression |
|---|---|
| isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
| Ref | Expression |
|---|---|
| isrrvv | ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrrvv.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
| 2 | 1 | rrvmbfm 34450 | . 2 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
| 3 | domprobsiga 34419 | . . . 4 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
| 4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
| 5 | brsigarn 34192 | . . . 4 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
| 6 | elrnsiga 34134 | . . . 4 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
| 7 | 5, 6 | mp1i 13 | . . 3 ⊢ (𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
| 8 | 4, 7 | ismbfm 34259 | . 2 ⊢ (𝜑 → (𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ) ↔ (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| 9 | unibrsiga 34194 | . . . . . 6 ⊢ ∪ 𝔅ℝ = ℝ | |
| 10 | 9 | oveq1i 7356 | . . . . 5 ⊢ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) = (ℝ ↑m ∪ dom 𝑃) |
| 11 | 10 | eleq2i 2823 | . . . 4 ⊢ (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ↔ 𝑋 ∈ (ℝ ↑m ∪ dom 𝑃)) |
| 12 | reex 11094 | . . . . 5 ⊢ ℝ ∈ V | |
| 13 | 4 | uniexd 7675 | . . . . 5 ⊢ (𝜑 → ∪ dom 𝑃 ∈ V) |
| 14 | elmapg 8763 | . . . . 5 ⊢ ((ℝ ∈ V ∧ ∪ dom 𝑃 ∈ V) → (𝑋 ∈ (ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) | |
| 15 | 12, 13, 14 | sylancr 587 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
| 16 | 11, 15 | bitrid 283 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
| 17 | 16 | anbi1d 631 | . 2 ⊢ (𝜑 → ((𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| 18 | 2, 8, 17 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∪ cuni 4859 ◡ccnv 5615 dom cdm 5616 ran crn 5617 “ cima 5619 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℝcr 11002 sigAlgebracsiga 34116 𝔅ℝcbrsiga 34189 MblFnMcmbfm 34257 Probcprb 34415 rRndVarcrrv 34448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-pre-lttri 11077 ax-pre-lttrn 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-ioo 13246 df-topgen 17344 df-top 22807 df-bases 22859 df-esum 34036 df-siga 34117 df-sigagen 34147 df-brsiga 34190 df-meas 34204 df-mbfm 34258 df-prob 34416 df-rrv 34449 |
| This theorem is referenced by: rrvvf 34452 rrvfinvima 34458 0rrv 34459 coinfliprv 34491 |
| Copyright terms: Public domain | W3C validator |