Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrrvv Structured version   Visualization version   GIF version

Theorem isrrvv 34434
Description: Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypothesis
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
isrrvv (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
Distinct variable groups:   𝑦,𝑃   𝑦,𝑋
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem isrrvv
StepHypRef Expression
1 isrrvv.1 . . 3 (𝜑𝑃 ∈ Prob)
21rrvmbfm 34433 . 2 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
3 domprobsiga 34402 . . . 4 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
41, 3syl 17 . . 3 (𝜑 → dom 𝑃 ran sigAlgebra)
5 brsigarn 34174 . . . 4 𝔅 ∈ (sigAlgebra‘ℝ)
6 elrnsiga 34116 . . . 4 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
75, 6mp1i 13 . . 3 (𝜑 → 𝔅 ran sigAlgebra)
84, 7ismbfm 34241 . 2 (𝜑 → (𝑋 ∈ (dom 𝑃MblFnM𝔅) ↔ (𝑋 ∈ ( 𝔅m dom 𝑃) ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
9 unibrsiga 34176 . . . . . 6 𝔅 = ℝ
109oveq1i 7397 . . . . 5 ( 𝔅m dom 𝑃) = (ℝ ↑m dom 𝑃)
1110eleq2i 2820 . . . 4 (𝑋 ∈ ( 𝔅m dom 𝑃) ↔ 𝑋 ∈ (ℝ ↑m dom 𝑃))
12 reex 11159 . . . . 5 ℝ ∈ V
134uniexd 7718 . . . . 5 (𝜑 dom 𝑃 ∈ V)
14 elmapg 8812 . . . . 5 ((ℝ ∈ V ∧ dom 𝑃 ∈ V) → (𝑋 ∈ (ℝ ↑m dom 𝑃) ↔ 𝑋: dom 𝑃⟶ℝ))
1512, 13, 14sylancr 587 . . . 4 (𝜑 → (𝑋 ∈ (ℝ ↑m dom 𝑃) ↔ 𝑋: dom 𝑃⟶ℝ))
1611, 15bitrid 283 . . 3 (𝜑 → (𝑋 ∈ ( 𝔅m dom 𝑃) ↔ 𝑋: dom 𝑃⟶ℝ))
1716anbi1d 631 . 2 (𝜑 → ((𝑋 ∈ ( 𝔅m dom 𝑃) ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
182, 8, 173bitrd 305 1 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3044  Vcvv 3447   cuni 4871  ccnv 5637  dom cdm 5638  ran crn 5639  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  cr 11067  sigAlgebracsiga 34098  𝔅cbrsiga 34171  MblFnMcmbfm 34239  Probcprb 34398  rRndVarcrrv 34431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-ioo 13310  df-topgen 17406  df-top 22781  df-bases 22833  df-esum 34018  df-siga 34099  df-sigagen 34129  df-brsiga 34172  df-meas 34186  df-mbfm 34240  df-prob 34399  df-rrv 34432
This theorem is referenced by:  rrvvf  34435  rrvfinvima  34441  0rrv  34442  coinfliprv  34474
  Copyright terms: Public domain W3C validator