![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrrvv | Structured version Visualization version GIF version |
Description: Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.) |
Ref | Expression |
---|---|
isrrvv.1 | ⊢ (𝜑 → 𝑃 ∈ Prob) |
Ref | Expression |
---|---|
isrrvv | ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrrvv.1 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Prob) | |
2 | 1 | rrvmbfm 34407 | . 2 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ))) |
3 | domprobsiga 34376 | . . . 4 ⊢ (𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
4 | 1, 3 | syl 17 | . . 3 ⊢ (𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra) |
5 | brsigarn 34148 | . . . 4 ⊢ 𝔅ℝ ∈ (sigAlgebra‘ℝ) | |
6 | elrnsiga 34090 | . . . 4 ⊢ (𝔅ℝ ∈ (sigAlgebra‘ℝ) → 𝔅ℝ ∈ ∪ ran sigAlgebra) | |
7 | 5, 6 | mp1i 13 | . . 3 ⊢ (𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra) |
8 | 4, 7 | ismbfm 34215 | . 2 ⊢ (𝜑 → (𝑋 ∈ (dom 𝑃MblFnM𝔅ℝ) ↔ (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
9 | unibrsiga 34150 | . . . . . 6 ⊢ ∪ 𝔅ℝ = ℝ | |
10 | 9 | oveq1i 7458 | . . . . 5 ⊢ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) = (ℝ ↑m ∪ dom 𝑃) |
11 | 10 | eleq2i 2836 | . . . 4 ⊢ (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ↔ 𝑋 ∈ (ℝ ↑m ∪ dom 𝑃)) |
12 | reex 11275 | . . . . 5 ⊢ ℝ ∈ V | |
13 | 4 | uniexd 7777 | . . . . 5 ⊢ (𝜑 → ∪ dom 𝑃 ∈ V) |
14 | elmapg 8897 | . . . . 5 ⊢ ((ℝ ∈ V ∧ ∪ dom 𝑃 ∈ V) → (𝑋 ∈ (ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) | |
15 | 12, 13, 14 | sylancr 586 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
16 | 11, 15 | bitrid 283 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ↔ 𝑋:∪ dom 𝑃⟶ℝ)) |
17 | 16 | anbi1d 630 | . 2 ⊢ (𝜑 → ((𝑋 ∈ (∪ 𝔅ℝ ↑m ∪ dom 𝑃) ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
18 | 2, 8, 17 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋:∪ dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅ℝ (◡𝑋 “ 𝑦) ∈ dom 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∪ cuni 4931 ◡ccnv 5699 dom cdm 5700 ran crn 5701 “ cima 5703 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 ℝcr 11183 sigAlgebracsiga 34072 𝔅ℝcbrsiga 34145 MblFnMcmbfm 34213 Probcprb 34372 rRndVarcrrv 34405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ioo 13411 df-topgen 17503 df-top 22921 df-bases 22974 df-esum 33992 df-siga 34073 df-sigagen 34103 df-brsiga 34146 df-meas 34160 df-mbfm 34214 df-prob 34373 df-rrv 34406 |
This theorem is referenced by: rrvvf 34409 rrvfinvima 34415 0rrv 34416 coinfliprv 34447 |
Copyright terms: Public domain | W3C validator |