Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrrvv Structured version   Visualization version   GIF version

Theorem isrrvv 34480
Description: Elementhood to the set of real-valued random variables with respect to the probability 𝑃. (Contributed by Thierry Arnoux, 25-Jan-2017.)
Hypothesis
Ref Expression
isrrvv.1 (𝜑𝑃 ∈ Prob)
Assertion
Ref Expression
isrrvv (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
Distinct variable groups:   𝑦,𝑃   𝑦,𝑋
Allowed substitution hint:   𝜑(𝑦)

Proof of Theorem isrrvv
StepHypRef Expression
1 isrrvv.1 . . 3 (𝜑𝑃 ∈ Prob)
21rrvmbfm 34479 . 2 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ 𝑋 ∈ (dom 𝑃MblFnM𝔅)))
3 domprobsiga 34448 . . . 4 (𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra)
41, 3syl 17 . . 3 (𝜑 → dom 𝑃 ran sigAlgebra)
5 brsigarn 34220 . . . 4 𝔅 ∈ (sigAlgebra‘ℝ)
6 elrnsiga 34162 . . . 4 (𝔅 ∈ (sigAlgebra‘ℝ) → 𝔅 ran sigAlgebra)
75, 6mp1i 13 . . 3 (𝜑 → 𝔅 ran sigAlgebra)
84, 7ismbfm 34287 . 2 (𝜑 → (𝑋 ∈ (dom 𝑃MblFnM𝔅) ↔ (𝑋 ∈ ( 𝔅m dom 𝑃) ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
9 unibrsiga 34222 . . . . . 6 𝔅 = ℝ
109oveq1i 7420 . . . . 5 ( 𝔅m dom 𝑃) = (ℝ ↑m dom 𝑃)
1110eleq2i 2827 . . . 4 (𝑋 ∈ ( 𝔅m dom 𝑃) ↔ 𝑋 ∈ (ℝ ↑m dom 𝑃))
12 reex 11225 . . . . 5 ℝ ∈ V
134uniexd 7741 . . . . 5 (𝜑 dom 𝑃 ∈ V)
14 elmapg 8858 . . . . 5 ((ℝ ∈ V ∧ dom 𝑃 ∈ V) → (𝑋 ∈ (ℝ ↑m dom 𝑃) ↔ 𝑋: dom 𝑃⟶ℝ))
1512, 13, 14sylancr 587 . . . 4 (𝜑 → (𝑋 ∈ (ℝ ↑m dom 𝑃) ↔ 𝑋: dom 𝑃⟶ℝ))
1611, 15bitrid 283 . . 3 (𝜑 → (𝑋 ∈ ( 𝔅m dom 𝑃) ↔ 𝑋: dom 𝑃⟶ℝ))
1716anbi1d 631 . 2 (𝜑 → ((𝑋 ∈ ( 𝔅m dom 𝑃) ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
182, 8, 173bitrd 305 1 (𝜑 → (𝑋 ∈ (rRndVar‘𝑃) ↔ (𝑋: dom 𝑃⟶ℝ ∧ ∀𝑦 ∈ 𝔅 (𝑋𝑦) ∈ dom 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3052  Vcvv 3464   cuni 4888  ccnv 5658  dom cdm 5659  ran crn 5660  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  cr 11133  sigAlgebracsiga 34144  𝔅cbrsiga 34217  MblFnMcmbfm 34285  Probcprb 34444  rRndVarcrrv 34477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-ioo 13371  df-topgen 17462  df-top 22837  df-bases 22889  df-esum 34064  df-siga 34145  df-sigagen 34175  df-brsiga 34218  df-meas 34232  df-mbfm 34286  df-prob 34445  df-rrv 34478
This theorem is referenced by:  rrvvf  34481  rrvfinvima  34487  0rrv  34488  coinfliprv  34520
  Copyright terms: Public domain W3C validator