Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sate0 Structured version   Visualization version   GIF version

Theorem sate0 35383
Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.)
Assertion
Ref Expression
sate0 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))

Proof of Theorem sate0
StepHypRef Expression
1 0ex 5325 . . 3 ∅ ∈ V
2 satefv 35382 . . 3 ((∅ ∈ V ∧ 𝑈𝑉) → (∅ Sat 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈))
31, 2mpan 689 . 2 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈))
4 xp0 6189 . . . . . . 7 (∅ × ∅) = ∅
54ineq2i 4238 . . . . . 6 ( E ∩ (∅ × ∅)) = ( E ∩ ∅)
6 in0 4418 . . . . . 6 ( E ∩ ∅) = ∅
75, 6eqtri 2768 . . . . 5 ( E ∩ (∅ × ∅)) = ∅
87oveq2i 7459 . . . 4 (∅ Sat ( E ∩ (∅ × ∅))) = (∅ Sat ∅)
98fveq1i 6921 . . 3 ((∅ Sat ( E ∩ (∅ × ∅)))‘ω) = ((∅ Sat ∅)‘ω)
109fveq1i 6921 . 2 (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)
113, 10eqtrdi 2796 1 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  c0 4352   E cep 5598   × cxp 5698  cfv 6573  (class class class)co 7448  ωcom 7903   Sat csat 35304   Sat csate 35306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-sate 35312
This theorem is referenced by:  prv0  35398
  Copyright terms: Public domain W3C validator