Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sate0 Structured version   Visualization version   GIF version

Theorem sate0 35437
Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.)
Assertion
Ref Expression
sate0 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))

Proof of Theorem sate0
StepHypRef Expression
1 0ex 5277 . . 3 ∅ ∈ V
2 satefv 35436 . . 3 ((∅ ∈ V ∧ 𝑈𝑉) → (∅ Sat 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈))
31, 2mpan 690 . 2 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈))
4 xp0 6147 . . . . . . 7 (∅ × ∅) = ∅
54ineq2i 4192 . . . . . 6 ( E ∩ (∅ × ∅)) = ( E ∩ ∅)
6 in0 4370 . . . . . 6 ( E ∩ ∅) = ∅
75, 6eqtri 2758 . . . . 5 ( E ∩ (∅ × ∅)) = ∅
87oveq2i 7416 . . . 4 (∅ Sat ( E ∩ (∅ × ∅))) = (∅ Sat ∅)
98fveq1i 6877 . . 3 ((∅ Sat ( E ∩ (∅ × ∅)))‘ω) = ((∅ Sat ∅)‘ω)
109fveq1i 6877 . 2 (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)
113, 10eqtrdi 2786 1 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cin 3925  c0 4308   E cep 5552   × cxp 5652  cfv 6531  (class class class)co 7405  ωcom 7861   Sat csat 35358   Sat csate 35360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-sate 35366
This theorem is referenced by:  prv0  35452
  Copyright terms: Public domain W3C validator