![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sate0 | Structured version Visualization version GIF version |
Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.) |
Ref | Expression |
---|---|
sate0 | ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
2 | satefv 35382 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑈 ∈ 𝑉) → (∅ Sat∈ 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈)) | |
3 | 1, 2 | mpan 689 | . 2 ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈)) |
4 | xp0 6189 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
5 | 4 | ineq2i 4238 | . . . . . 6 ⊢ ( E ∩ (∅ × ∅)) = ( E ∩ ∅) |
6 | in0 4418 | . . . . . 6 ⊢ ( E ∩ ∅) = ∅ | |
7 | 5, 6 | eqtri 2768 | . . . . 5 ⊢ ( E ∩ (∅ × ∅)) = ∅ |
8 | 7 | oveq2i 7459 | . . . 4 ⊢ (∅ Sat ( E ∩ (∅ × ∅))) = (∅ Sat ∅) |
9 | 8 | fveq1i 6921 | . . 3 ⊢ ((∅ Sat ( E ∩ (∅ × ∅)))‘ω) = ((∅ Sat ∅)‘ω) |
10 | 9 | fveq1i 6921 | . 2 ⊢ (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈) = (((∅ Sat ∅)‘ω)‘𝑈) |
11 | 3, 10 | eqtrdi 2796 | 1 ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ∅c0 4352 E cep 5598 × cxp 5698 ‘cfv 6573 (class class class)co 7448 ωcom 7903 Sat csat 35304 Sat∈ csate 35306 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sate 35312 |
This theorem is referenced by: prv0 35398 |
Copyright terms: Public domain | W3C validator |