| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sate0 | Structured version Visualization version GIF version | ||
| Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| sate0 | ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 2 | satefv 35401 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑈 ∈ 𝑉) → (∅ Sat∈ 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈)) |
| 4 | xp0 6131 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
| 5 | 4 | ineq2i 4180 | . . . . . 6 ⊢ ( E ∩ (∅ × ∅)) = ( E ∩ ∅) |
| 6 | in0 4358 | . . . . . 6 ⊢ ( E ∩ ∅) = ∅ | |
| 7 | 5, 6 | eqtri 2752 | . . . . 5 ⊢ ( E ∩ (∅ × ∅)) = ∅ |
| 8 | 7 | oveq2i 7398 | . . . 4 ⊢ (∅ Sat ( E ∩ (∅ × ∅))) = (∅ Sat ∅) |
| 9 | 8 | fveq1i 6859 | . . 3 ⊢ ((∅ Sat ( E ∩ (∅ × ∅)))‘ω) = ((∅ Sat ∅)‘ω) |
| 10 | 9 | fveq1i 6859 | . 2 ⊢ (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈) = (((∅ Sat ∅)‘ω)‘𝑈) |
| 11 | 3, 10 | eqtrdi 2780 | 1 ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 ∅c0 4296 E cep 5537 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ωcom 7842 Sat csat 35323 Sat∈ csate 35325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-sate 35331 |
| This theorem is referenced by: prv0 35417 |
| Copyright terms: Public domain | W3C validator |