| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sate0 | Structured version Visualization version GIF version | ||
| Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| sate0 | ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 2 | satefv 35408 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑈 ∈ 𝑉) → (∅ Sat∈ 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈)) |
| 4 | xp0 6134 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
| 5 | 4 | ineq2i 4183 | . . . . . 6 ⊢ ( E ∩ (∅ × ∅)) = ( E ∩ ∅) |
| 6 | in0 4361 | . . . . . 6 ⊢ ( E ∩ ∅) = ∅ | |
| 7 | 5, 6 | eqtri 2753 | . . . . 5 ⊢ ( E ∩ (∅ × ∅)) = ∅ |
| 8 | 7 | oveq2i 7401 | . . . 4 ⊢ (∅ Sat ( E ∩ (∅ × ∅))) = (∅ Sat ∅) |
| 9 | 8 | fveq1i 6862 | . . 3 ⊢ ((∅ Sat ( E ∩ (∅ × ∅)))‘ω) = ((∅ Sat ∅)‘ω) |
| 10 | 9 | fveq1i 6862 | . 2 ⊢ (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈) = (((∅ Sat ∅)‘ω)‘𝑈) |
| 11 | 3, 10 | eqtrdi 2781 | 1 ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ∅c0 4299 E cep 5540 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ωcom 7845 Sat csat 35330 Sat∈ csate 35332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-sate 35338 |
| This theorem is referenced by: prv0 35424 |
| Copyright terms: Public domain | W3C validator |