Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sate0 | Structured version Visualization version GIF version |
Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.) |
Ref | Expression |
---|---|
sate0 | ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5226 | . . 3 ⊢ ∅ ∈ V | |
2 | satefv 33276 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑈 ∈ 𝑉) → (∅ Sat∈ 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈)) | |
3 | 1, 2 | mpan 686 | . 2 ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈)) |
4 | xp0 6050 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
5 | 4 | ineq2i 4140 | . . . . . 6 ⊢ ( E ∩ (∅ × ∅)) = ( E ∩ ∅) |
6 | in0 4322 | . . . . . 6 ⊢ ( E ∩ ∅) = ∅ | |
7 | 5, 6 | eqtri 2766 | . . . . 5 ⊢ ( E ∩ (∅ × ∅)) = ∅ |
8 | 7 | oveq2i 7266 | . . . 4 ⊢ (∅ Sat ( E ∩ (∅ × ∅))) = (∅ Sat ∅) |
9 | 8 | fveq1i 6757 | . . 3 ⊢ ((∅ Sat ( E ∩ (∅ × ∅)))‘ω) = ((∅ Sat ∅)‘ω) |
10 | 9 | fveq1i 6757 | . 2 ⊢ (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈) = (((∅ Sat ∅)‘ω)‘𝑈) |
11 | 3, 10 | eqtrdi 2795 | 1 ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∩ cin 3882 ∅c0 4253 E cep 5485 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ωcom 7687 Sat csat 33198 Sat∈ csate 33200 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-sate 33206 |
This theorem is referenced by: prv0 33292 |
Copyright terms: Public domain | W3C validator |