Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sate0 Structured version   Visualization version   GIF version

Theorem sate0 34870
Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.)
Assertion
Ref Expression
sate0 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))

Proof of Theorem sate0
StepHypRef Expression
1 0ex 5307 . . 3 ∅ ∈ V
2 satefv 34869 . . 3 ((∅ ∈ V ∧ 𝑈𝑉) → (∅ Sat 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈))
31, 2mpan 687 . 2 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈))
4 xp0 6157 . . . . . . 7 (∅ × ∅) = ∅
54ineq2i 4209 . . . . . 6 ( E ∩ (∅ × ∅)) = ( E ∩ ∅)
6 in0 4391 . . . . . 6 ( E ∩ ∅) = ∅
75, 6eqtri 2759 . . . . 5 ( E ∩ (∅ × ∅)) = ∅
87oveq2i 7423 . . . 4 (∅ Sat ( E ∩ (∅ × ∅))) = (∅ Sat ∅)
98fveq1i 6892 . . 3 ((∅ Sat ( E ∩ (∅ × ∅)))‘ω) = ((∅ Sat ∅)‘ω)
109fveq1i 6892 . 2 (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)
113, 10eqtrdi 2787 1 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3473  cin 3947  c0 4322   E cep 5579   × cxp 5674  cfv 6543  (class class class)co 7412  ωcom 7859   Sat csat 34791   Sat csate 34793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-sate 34799
This theorem is referenced by:  prv0  34885
  Copyright terms: Public domain W3C validator