| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sate0 | Structured version Visualization version GIF version | ||
| Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.) |
| Ref | Expression |
|---|---|
| sate0 | ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 2 | satefv 35481 | . . 3 ⊢ ((∅ ∈ V ∧ 𝑈 ∈ 𝑉) → (∅ Sat∈ 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈)) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈)) |
| 4 | xp0 5721 | . . . . . . 7 ⊢ (∅ × ∅) = ∅ | |
| 5 | 4 | ineq2i 4166 | . . . . . 6 ⊢ ( E ∩ (∅ × ∅)) = ( E ∩ ∅) |
| 6 | in0 4344 | . . . . . 6 ⊢ ( E ∩ ∅) = ∅ | |
| 7 | 5, 6 | eqtri 2756 | . . . . 5 ⊢ ( E ∩ (∅ × ∅)) = ∅ |
| 8 | 7 | oveq2i 7365 | . . . 4 ⊢ (∅ Sat ( E ∩ (∅ × ∅))) = (∅ Sat ∅) |
| 9 | 8 | fveq1i 6831 | . . 3 ⊢ ((∅ Sat ( E ∩ (∅ × ∅)))‘ω) = ((∅ Sat ∅)‘ω) |
| 10 | 9 | fveq1i 6831 | . 2 ⊢ (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈) = (((∅ Sat ∅)‘ω)‘𝑈) |
| 11 | 3, 10 | eqtrdi 2784 | 1 ⊢ (𝑈 ∈ 𝑉 → (∅ Sat∈ 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ∅c0 4282 E cep 5520 × cxp 5619 ‘cfv 6488 (class class class)co 7354 ωcom 7804 Sat csat 35403 Sat∈ csate 35405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-sate 35411 |
| This theorem is referenced by: prv0 35497 |
| Copyright terms: Public domain | W3C validator |