Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sate0 Structured version   Visualization version   GIF version

Theorem sate0 35457
Description: The simplified satisfaction predicate for any wff code over an empty model. (Contributed by AV, 6-Oct-2023.) (Revised by AV, 5-Nov-2023.)
Assertion
Ref Expression
sate0 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))

Proof of Theorem sate0
StepHypRef Expression
1 0ex 5245 . . 3 ∅ ∈ V
2 satefv 35456 . . 3 ((∅ ∈ V ∧ 𝑈𝑉) → (∅ Sat 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈))
31, 2mpan 690 . 2 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈))
4 xp0 6105 . . . . . . 7 (∅ × ∅) = ∅
54ineq2i 4167 . . . . . 6 ( E ∩ (∅ × ∅)) = ( E ∩ ∅)
6 in0 4345 . . . . . 6 ( E ∩ ∅) = ∅
75, 6eqtri 2754 . . . . 5 ( E ∩ (∅ × ∅)) = ∅
87oveq2i 7357 . . . 4 (∅ Sat ( E ∩ (∅ × ∅))) = (∅ Sat ∅)
98fveq1i 6823 . . 3 ((∅ Sat ( E ∩ (∅ × ∅)))‘ω) = ((∅ Sat ∅)‘ω)
109fveq1i 6823 . 2 (((∅ Sat ( E ∩ (∅ × ∅)))‘ω)‘𝑈) = (((∅ Sat ∅)‘ω)‘𝑈)
113, 10eqtrdi 2782 1 (𝑈𝑉 → (∅ Sat 𝑈) = (((∅ Sat ∅)‘ω)‘𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  cin 3901  c0 4283   E cep 5515   × cxp 5614  cfv 6481  (class class class)co 7346  ωcom 7796   Sat csat 35378   Sat csate 35380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-sate 35386
This theorem is referenced by:  prv0  35472
  Copyright terms: Public domain W3C validator