| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > satef | Structured version Visualization version GIF version | ||
| Description: The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023.) |
| Ref | Expression |
|---|---|
| satef | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satefv 35481 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | |
| 2 | 1 | eleq2d 2819 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat∈ 𝑈) ↔ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 3 | simpl 482 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → 𝑀 ∈ 𝑉) | |
| 4 | incom 4158 | . . . . . . . . 9 ⊢ ( E ∩ (𝑀 × 𝑀)) = ((𝑀 × 𝑀) ∩ E ) | |
| 5 | sqxpexg 7696 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ 𝑉 → (𝑀 × 𝑀) ∈ V) | |
| 6 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 × 𝑀) ∈ V) |
| 7 | inex1g 5261 | . . . . . . . . . 10 ⊢ ((𝑀 × 𝑀) ∈ V → ((𝑀 × 𝑀) ∩ E ) ∈ V) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → ((𝑀 × 𝑀) ∩ E ) ∈ V) |
| 9 | 4, 8 | eqeltrid 2837 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → ( E ∩ (𝑀 × 𝑀)) ∈ V) |
| 10 | 3, 9 | jca 511 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V)) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V)) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → 𝑈 ∈ (Fmla‘ω)) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑈 ∈ (Fmla‘ω)) |
| 14 | simpr 484 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | |
| 15 | 11, 13, 14 | 3jca 1128 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))) |
| 17 | 2, 16 | sylbid 240 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat∈ 𝑈) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))) |
| 18 | 17 | 3impia 1117 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 19 | satfvel 35479 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) | |
| 20 | 18, 19 | syl 17 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 E cep 5520 × cxp 5619 ⟶wf 6484 ‘cfv 6488 (class class class)co 7354 ωcom 7804 Sat csat 35403 Fmlacfmla 35404 Sat∈ csate 35405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-ac2 10363 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-card 9841 df-ac 10016 df-goel 35407 df-gona 35408 df-goal 35409 df-sat 35410 df-sate 35411 df-fmla 35412 |
| This theorem is referenced by: sate0fv0 35484 |
| Copyright terms: Public domain | W3C validator |