| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > satef | Structured version Visualization version GIF version | ||
| Description: The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023.) |
| Ref | Expression |
|---|---|
| satef | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satefv 35401 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | |
| 2 | 1 | eleq2d 2814 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat∈ 𝑈) ↔ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 3 | simpl 482 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → 𝑀 ∈ 𝑉) | |
| 4 | incom 4172 | . . . . . . . . 9 ⊢ ( E ∩ (𝑀 × 𝑀)) = ((𝑀 × 𝑀) ∩ E ) | |
| 5 | sqxpexg 7731 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ 𝑉 → (𝑀 × 𝑀) ∈ V) | |
| 6 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 × 𝑀) ∈ V) |
| 7 | inex1g 5274 | . . . . . . . . . 10 ⊢ ((𝑀 × 𝑀) ∈ V → ((𝑀 × 𝑀) ∩ E ) ∈ V) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → ((𝑀 × 𝑀) ∩ E ) ∈ V) |
| 9 | 4, 8 | eqeltrid 2832 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → ( E ∩ (𝑀 × 𝑀)) ∈ V) |
| 10 | 3, 9 | jca 511 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V)) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V)) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → 𝑈 ∈ (Fmla‘ω)) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑈 ∈ (Fmla‘ω)) |
| 14 | simpr 484 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | |
| 15 | 11, 13, 14 | 3jca 1128 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))) |
| 17 | 2, 16 | sylbid 240 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat∈ 𝑈) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))) |
| 18 | 17 | 3impia 1117 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 19 | satfvel 35399 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) | |
| 20 | 18, 19 | syl 17 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3447 ∩ cin 3913 E cep 5537 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ωcom 7842 Sat csat 35323 Fmlacfmla 35324 Sat∈ csate 35325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-ac2 10416 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-ac 10069 df-goel 35327 df-gona 35328 df-goal 35329 df-sat 35330 df-sate 35331 df-fmla 35332 |
| This theorem is referenced by: sate0fv0 35404 |
| Copyright terms: Public domain | W3C validator |