Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satef Structured version   Visualization version   GIF version

Theorem satef 35401
Description: The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023.)
Assertion
Ref Expression
satef ((𝑀𝑉𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat 𝑈)) → 𝑆:ω⟶𝑀)

Proof of Theorem satef
StepHypRef Expression
1 satefv 35399 . . . . 5 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑀 Sat 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
21eleq2d 2825 . . . 4 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat 𝑈) ↔ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))
3 simpl 482 . . . . . . . 8 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → 𝑀𝑉)
4 incom 4217 . . . . . . . . 9 ( E ∩ (𝑀 × 𝑀)) = ((𝑀 × 𝑀) ∩ E )
5 sqxpexg 7774 . . . . . . . . . . 11 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
65adantr 480 . . . . . . . . . 10 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑀 × 𝑀) ∈ V)
7 inex1g 5325 . . . . . . . . . 10 ((𝑀 × 𝑀) ∈ V → ((𝑀 × 𝑀) ∩ E ) ∈ V)
86, 7syl 17 . . . . . . . . 9 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → ((𝑀 × 𝑀) ∩ E ) ∈ V)
94, 8eqeltrid 2843 . . . . . . . 8 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → ( E ∩ (𝑀 × 𝑀)) ∈ V)
103, 9jca 511 . . . . . . 7 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
1110adantr 480 . . . . . 6 (((𝑀𝑉𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
12 simpr 484 . . . . . . 7 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → 𝑈 ∈ (Fmla‘ω))
1312adantr 480 . . . . . 6 (((𝑀𝑉𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑈 ∈ (Fmla‘ω))
14 simpr 484 . . . . . 6 (((𝑀𝑉𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
1511, 13, 143jca 1127 . . . . 5 (((𝑀𝑉𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))
1615ex 412 . . . 4 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) → ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))))
172, 16sylbid 240 . . 3 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat 𝑈) → ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))))
18173impia 1116 . 2 ((𝑀𝑉𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat 𝑈)) → ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))
19 satfvel 35397 . 2 (((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆:ω⟶𝑀)
2018, 19syl 17 1 ((𝑀𝑉𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat 𝑈)) → 𝑆:ω⟶𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2106  Vcvv 3478  cin 3962   E cep 5588   × cxp 5687  wf 6559  cfv 6563  (class class class)co 7431  ωcom 7887   Sat csat 35321  Fmlacfmla 35322   Sat csate 35323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-ac2 10501
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-ac 10154  df-goel 35325  df-gona 35326  df-goal 35327  df-sat 35328  df-sate 35329  df-fmla 35330
This theorem is referenced by:  sate0fv0  35402
  Copyright terms: Public domain W3C validator