Step | Hyp | Ref
| Expression |
1 | | satefv 34703 |
. . . . 5
β’ ((π β π β§ π β (FmlaβΟ)) β (π Satβ π) = (((π Sat ( E β© (π Γ π)))βΟ)βπ)) |
2 | 1 | eleq2d 2817 |
. . . 4
β’ ((π β π β§ π β (FmlaβΟ)) β (π β (π Satβ π) β π β (((π Sat ( E β© (π Γ π)))βΟ)βπ))) |
3 | | simpl 481 |
. . . . . . . 8
β’ ((π β π β§ π β (FmlaβΟ)) β π β π) |
4 | | incom 4200 |
. . . . . . . . 9
β’ ( E β©
(π Γ π)) = ((π Γ π) β© E ) |
5 | | sqxpexg 7744 |
. . . . . . . . . . 11
β’ (π β π β (π Γ π) β V) |
6 | 5 | adantr 479 |
. . . . . . . . . 10
β’ ((π β π β§ π β (FmlaβΟ)) β (π Γ π) β V) |
7 | | inex1g 5318 |
. . . . . . . . . 10
β’ ((π Γ π) β V β ((π Γ π) β© E ) β V) |
8 | 6, 7 | syl 17 |
. . . . . . . . 9
β’ ((π β π β§ π β (FmlaβΟ)) β ((π Γ π) β© E ) β V) |
9 | 4, 8 | eqeltrid 2835 |
. . . . . . . 8
β’ ((π β π β§ π β (FmlaβΟ)) β ( E
β© (π Γ π)) β V) |
10 | 3, 9 | jca 510 |
. . . . . . 7
β’ ((π β π β§ π β (FmlaβΟ)) β (π β π β§ ( E β© (π Γ π)) β V)) |
11 | 10 | adantr 479 |
. . . . . 6
β’ (((π β π β§ π β (FmlaβΟ)) β§ π β (((π Sat ( E β© (π Γ π)))βΟ)βπ)) β (π β π β§ ( E β© (π Γ π)) β V)) |
12 | | simpr 483 |
. . . . . . 7
β’ ((π β π β§ π β (FmlaβΟ)) β π β
(FmlaβΟ)) |
13 | 12 | adantr 479 |
. . . . . 6
β’ (((π β π β§ π β (FmlaβΟ)) β§ π β (((π Sat ( E β© (π Γ π)))βΟ)βπ)) β π β
(FmlaβΟ)) |
14 | | simpr 483 |
. . . . . 6
β’ (((π β π β§ π β (FmlaβΟ)) β§ π β (((π Sat ( E β© (π Γ π)))βΟ)βπ)) β π β (((π Sat ( E β© (π Γ π)))βΟ)βπ)) |
15 | 11, 13, 14 | 3jca 1126 |
. . . . 5
β’ (((π β π β§ π β (FmlaβΟ)) β§ π β (((π Sat ( E β© (π Γ π)))βΟ)βπ)) β ((π β π β§ ( E β© (π Γ π)) β V) β§ π β (FmlaβΟ) β§ π β (((π Sat ( E β© (π Γ π)))βΟ)βπ))) |
16 | 15 | ex 411 |
. . . 4
β’ ((π β π β§ π β (FmlaβΟ)) β (π β (((π Sat ( E β© (π Γ π)))βΟ)βπ) β ((π β π β§ ( E β© (π Γ π)) β V) β§ π β (FmlaβΟ) β§ π β (((π Sat ( E β© (π Γ π)))βΟ)βπ)))) |
17 | 2, 16 | sylbid 239 |
. . 3
β’ ((π β π β§ π β (FmlaβΟ)) β (π β (π Satβ π) β ((π β π β§ ( E β© (π Γ π)) β V) β§ π β (FmlaβΟ) β§ π β (((π Sat ( E β© (π Γ π)))βΟ)βπ)))) |
18 | 17 | 3impia 1115 |
. 2
β’ ((π β π β§ π β (FmlaβΟ) β§ π β (π Satβ π)) β ((π β π β§ ( E β© (π Γ π)) β V) β§ π β (FmlaβΟ) β§ π β (((π Sat ( E β© (π Γ π)))βΟ)βπ))) |
19 | | satfvel 34701 |
. 2
β’ (((π β π β§ ( E β© (π Γ π)) β V) β§ π β (FmlaβΟ) β§ π β (((π Sat ( E β© (π Γ π)))βΟ)βπ)) β π:ΟβΆπ) |
20 | 18, 19 | syl 17 |
1
β’ ((π β π β§ π β (FmlaβΟ) β§ π β (π Satβ π)) β π:ΟβΆπ) |