Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satef Structured version   Visualization version   GIF version

Theorem satef 35384
Description: The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023.)
Assertion
Ref Expression
satef ((𝑀𝑉𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat 𝑈)) → 𝑆:ω⟶𝑀)

Proof of Theorem satef
StepHypRef Expression
1 satefv 35382 . . . . 5 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑀 Sat 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
21eleq2d 2830 . . . 4 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat 𝑈) ↔ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))
3 simpl 482 . . . . . . . 8 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → 𝑀𝑉)
4 incom 4230 . . . . . . . . 9 ( E ∩ (𝑀 × 𝑀)) = ((𝑀 × 𝑀) ∩ E )
5 sqxpexg 7790 . . . . . . . . . . 11 (𝑀𝑉 → (𝑀 × 𝑀) ∈ V)
65adantr 480 . . . . . . . . . 10 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑀 × 𝑀) ∈ V)
7 inex1g 5337 . . . . . . . . . 10 ((𝑀 × 𝑀) ∈ V → ((𝑀 × 𝑀) ∩ E ) ∈ V)
86, 7syl 17 . . . . . . . . 9 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → ((𝑀 × 𝑀) ∩ E ) ∈ V)
94, 8eqeltrid 2848 . . . . . . . 8 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → ( E ∩ (𝑀 × 𝑀)) ∈ V)
103, 9jca 511 . . . . . . 7 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
1110adantr 480 . . . . . 6 (((𝑀𝑉𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → (𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V))
12 simpr 484 . . . . . . 7 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → 𝑈 ∈ (Fmla‘ω))
1312adantr 480 . . . . . 6 (((𝑀𝑉𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑈 ∈ (Fmla‘ω))
14 simpr 484 . . . . . 6 (((𝑀𝑉𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))
1511, 13, 143jca 1128 . . . . 5 (((𝑀𝑉𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))
1615ex 412 . . . 4 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) → ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))))
172, 16sylbid 240 . . 3 ((𝑀𝑉𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat 𝑈) → ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))))
18173impia 1117 . 2 ((𝑀𝑉𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat 𝑈)) → ((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))
19 satfvel 35380 . 2 (((𝑀𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆:ω⟶𝑀)
2018, 19syl 17 1 ((𝑀𝑉𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat 𝑈)) → 𝑆:ω⟶𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108  Vcvv 3488  cin 3975   E cep 5598   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903   Sat csat 35304  Fmlacfmla 35305   Sat csate 35306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185  df-goel 35308  df-gona 35309  df-goal 35310  df-sat 35311  df-sate 35312  df-fmla 35313
This theorem is referenced by:  sate0fv0  35385
  Copyright terms: Public domain W3C validator