| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > satef | Structured version Visualization version GIF version | ||
| Description: The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023.) |
| Ref | Expression |
|---|---|
| satef | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satefv 35441 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | |
| 2 | 1 | eleq2d 2821 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat∈ 𝑈) ↔ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 3 | simpl 482 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → 𝑀 ∈ 𝑉) | |
| 4 | incom 4189 | . . . . . . . . 9 ⊢ ( E ∩ (𝑀 × 𝑀)) = ((𝑀 × 𝑀) ∩ E ) | |
| 5 | sqxpexg 7754 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ 𝑉 → (𝑀 × 𝑀) ∈ V) | |
| 6 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 × 𝑀) ∈ V) |
| 7 | inex1g 5294 | . . . . . . . . . 10 ⊢ ((𝑀 × 𝑀) ∈ V → ((𝑀 × 𝑀) ∩ E ) ∈ V) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → ((𝑀 × 𝑀) ∩ E ) ∈ V) |
| 9 | 4, 8 | eqeltrid 2839 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → ( E ∩ (𝑀 × 𝑀)) ∈ V) |
| 10 | 3, 9 | jca 511 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V)) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V)) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → 𝑈 ∈ (Fmla‘ω)) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑈 ∈ (Fmla‘ω)) |
| 14 | simpr 484 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | |
| 15 | 11, 13, 14 | 3jca 1128 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))) |
| 17 | 2, 16 | sylbid 240 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat∈ 𝑈) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))) |
| 18 | 17 | 3impia 1117 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 19 | satfvel 35439 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) | |
| 20 | 18, 19 | syl 17 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 E cep 5557 × cxp 5657 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ωcom 7866 Sat csat 35363 Fmlacfmla 35364 Sat∈ csate 35365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-ac2 10482 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9958 df-ac 10135 df-goel 35367 df-gona 35368 df-goal 35369 df-sat 35370 df-sate 35371 df-fmla 35372 |
| This theorem is referenced by: sate0fv0 35444 |
| Copyright terms: Public domain | W3C validator |