| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > satef | Structured version Visualization version GIF version | ||
| Description: The simplified satisfaction predicate as function over wff codes over an empty model. (Contributed by AV, 30-Oct-2023.) |
| Ref | Expression |
|---|---|
| satef | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satefv 35456 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 Sat∈ 𝑈) = (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | |
| 2 | 1 | eleq2d 2817 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat∈ 𝑈) ↔ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 3 | simpl 482 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → 𝑀 ∈ 𝑉) | |
| 4 | incom 4159 | . . . . . . . . 9 ⊢ ( E ∩ (𝑀 × 𝑀)) = ((𝑀 × 𝑀) ∩ E ) | |
| 5 | sqxpexg 7688 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ 𝑉 → (𝑀 × 𝑀) ∈ V) | |
| 6 | 5 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 × 𝑀) ∈ V) |
| 7 | inex1g 5257 | . . . . . . . . . 10 ⊢ ((𝑀 × 𝑀) ∈ V → ((𝑀 × 𝑀) ∩ E ) ∈ V) | |
| 8 | 6, 7 | syl 17 | . . . . . . . . 9 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → ((𝑀 × 𝑀) ∩ E ) ∈ V) |
| 9 | 4, 8 | eqeltrid 2835 | . . . . . . . 8 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → ( E ∩ (𝑀 × 𝑀)) ∈ V) |
| 10 | 3, 9 | jca 511 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V)) |
| 11 | 10 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → (𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V)) |
| 12 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → 𝑈 ∈ (Fmla‘ω)) | |
| 13 | 12 | adantr 480 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑈 ∈ (Fmla‘ω)) |
| 14 | simpr 484 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) | |
| 15 | 11, 13, 14 | 3jca 1128 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 16 | 15 | ex 412 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))) |
| 17 | 2, 16 | sylbid 240 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω)) → (𝑆 ∈ (𝑀 Sat∈ 𝑈) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)))) |
| 18 | 17 | 3impia 1117 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → ((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈))) |
| 19 | satfvel 35454 | . 2 ⊢ (((𝑀 ∈ 𝑉 ∧ ( E ∩ (𝑀 × 𝑀)) ∈ V) ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (((𝑀 Sat ( E ∩ (𝑀 × 𝑀)))‘ω)‘𝑈)) → 𝑆:ω⟶𝑀) | |
| 20 | 18, 19 | syl 17 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝑈 ∈ (Fmla‘ω) ∧ 𝑆 ∈ (𝑀 Sat∈ 𝑈)) → 𝑆:ω⟶𝑀) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 Vcvv 3436 ∩ cin 3901 E cep 5515 × cxp 5614 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ωcom 7796 Sat csat 35378 Fmlacfmla 35379 Sat∈ csate 35380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-ac2 10354 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-ac 10007 df-goel 35382 df-gona 35383 df-goal 35384 df-sat 35385 df-sate 35386 df-fmla 35387 |
| This theorem is referenced by: sate0fv0 35459 |
| Copyright terms: Public domain | W3C validator |