MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmat Structured version   Visualization version   GIF version

Theorem scmatmat 22538
Description: An 𝑁 x 𝑁 scalar matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatmat.a 𝐴 = (𝑁 Mat 𝑅)
scmatmat.b 𝐵 = (Base‘𝐴)
scmatmat.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatmat ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))

Proof of Theorem scmatmat
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 scmatmat.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 scmatmat.b . . 3 𝐵 = (Base‘𝐴)
4 eqid 2740 . . 3 (1r𝐴) = (1r𝐴)
5 eqid 2740 . . 3 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatmat.s . . 3 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 22534 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴)))))
8 simpl 482 . 2 ((𝑀𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴))) → 𝑀𝐵)
97, 8biimtrdi 253 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wrex 3076  cfv 6575  (class class class)co 7450  Fincfn 9005  Basecbs 17260   ·𝑠 cvsca 17317  1rcur 20210   Mat cmat 22434   ScMat cscmat 22518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-scmat 22520
This theorem is referenced by:  scmatsgrp  22548  scmatcrng  22550
  Copyright terms: Public domain W3C validator