![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatmat | Structured version Visualization version GIF version |
Description: An ๐ x ๐ scalar matrix over (the ring) ๐ is an ๐ x ๐ matrix over (the ring) ๐ . (Contributed by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
scmatmat.a | โข ๐ด = (๐ Mat ๐ ) |
scmatmat.b | โข ๐ต = (Baseโ๐ด) |
scmatmat.s | โข ๐ = (๐ ScMat ๐ ) |
Ref | Expression |
---|---|
scmatmat | โข ((๐ โ Fin โง ๐ โ ๐) โ (๐ โ ๐ โ ๐ โ ๐ต)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 โข (Baseโ๐ ) = (Baseโ๐ ) | |
2 | scmatmat.a | . . 3 โข ๐ด = (๐ Mat ๐ ) | |
3 | scmatmat.b | . . 3 โข ๐ต = (Baseโ๐ด) | |
4 | eqid 2731 | . . 3 โข (1rโ๐ด) = (1rโ๐ด) | |
5 | eqid 2731 | . . 3 โข ( ยท๐ โ๐ด) = ( ยท๐ โ๐ด) | |
6 | scmatmat.s | . . 3 โข ๐ = (๐ ScMat ๐ ) | |
7 | 1, 2, 3, 4, 5, 6 | scmatel 22228 | . 2 โข ((๐ โ Fin โง ๐ โ ๐) โ (๐ โ ๐ โ (๐ โ ๐ต โง โ๐ โ (Baseโ๐ )๐ = (๐( ยท๐ โ๐ด)(1rโ๐ด))))) |
8 | simpl 482 | . 2 โข ((๐ โ ๐ต โง โ๐ โ (Baseโ๐ )๐ = (๐( ยท๐ โ๐ด)(1rโ๐ด))) โ ๐ โ ๐ต) | |
9 | 7, 8 | syl6bi 253 | 1 โข ((๐ โ Fin โง ๐ โ ๐) โ (๐ โ ๐ โ ๐ โ ๐ต)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1540 โ wcel 2105 โwrex 3069 โcfv 6543 (class class class)co 7412 Fincfn 8943 Basecbs 17149 ยท๐ cvsca 17206 1rcur 20076 Mat cmat 22128 ScMat cscmat 22212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-scmat 22214 |
This theorem is referenced by: scmatsgrp 22242 scmatcrng 22244 |
Copyright terms: Public domain | W3C validator |