Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatmat | Structured version Visualization version GIF version |
Description: An 𝑁 x 𝑁 scalar matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
scmatmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatmat.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatmat.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | scmatmat.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatmat.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
4 | eqid 2739 | . . 3 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
5 | eqid 2739 | . . 3 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
6 | scmatmat.s | . . 3 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatel 21537 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))))) |
8 | simpl 486 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))) → 𝑀 ∈ 𝐵) | |
9 | 7, 8 | syl6bi 256 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ∃wrex 3065 ‘cfv 6415 (class class class)co 7252 Fincfn 8668 Basecbs 16815 ·𝑠 cvsca 16867 1rcur 19627 Mat cmat 21439 ScMat cscmat 21521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-iota 6373 df-fun 6417 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-scmat 21523 |
This theorem is referenced by: scmatsgrp 21551 scmatcrng 21553 |
Copyright terms: Public domain | W3C validator |