| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scmatmat | Structured version Visualization version GIF version | ||
| Description: An 𝑁 x 𝑁 scalar matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| Ref | Expression |
|---|---|
| scmatmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| scmatmat.b | ⊢ 𝐵 = (Base‘𝐴) |
| scmatmat.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
| Ref | Expression |
|---|---|
| scmatmat | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | scmatmat.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | scmatmat.b | . . 3 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | eqid 2734 | . . 3 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
| 5 | eqid 2734 | . . 3 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
| 6 | scmatmat.s | . . 3 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | scmatel 22459 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))))) |
| 8 | simpl 482 | . 2 ⊢ ((𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))) → 𝑀 ∈ 𝐵) | |
| 9 | 7, 8 | biimtrdi 253 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ‘cfv 6541 (class class class)co 7413 Fincfn 8967 Basecbs 17229 ·𝑠 cvsca 17277 1rcur 20146 Mat cmat 22359 ScMat cscmat 22443 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-scmat 22445 |
| This theorem is referenced by: scmatsgrp 22473 scmatcrng 22475 |
| Copyright terms: Public domain | W3C validator |