MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmat Structured version   Visualization version   GIF version

Theorem scmatmat 21541
Description: An 𝑁 x 𝑁 scalar matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatmat.a 𝐴 = (𝑁 Mat 𝑅)
scmatmat.b 𝐵 = (Base‘𝐴)
scmatmat.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatmat ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))

Proof of Theorem scmatmat
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 scmatmat.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 scmatmat.b . . 3 𝐵 = (Base‘𝐴)
4 eqid 2739 . . 3 (1r𝐴) = (1r𝐴)
5 eqid 2739 . . 3 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatmat.s . . 3 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 21537 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴)))))
8 simpl 486 . 2 ((𝑀𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴))) → 𝑀𝐵)
97, 8syl6bi 256 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wrex 3065  cfv 6415  (class class class)co 7252  Fincfn 8668  Basecbs 16815   ·𝑠 cvsca 16867  1rcur 19627   Mat cmat 21439   ScMat cscmat 21521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pr 5346
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4255  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5479  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-iota 6373  df-fun 6417  df-fv 6423  df-ov 7255  df-oprab 7256  df-mpo 7257  df-scmat 21523
This theorem is referenced by:  scmatsgrp  21551  scmatcrng  21553
  Copyright terms: Public domain W3C validator