MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmat Structured version   Visualization version   GIF version

Theorem scmatmat 22540
Description: An 𝑁 x 𝑁 scalar matrix over (the ring) 𝑅 is an 𝑁 x 𝑁 matrix over (the ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatmat.a 𝐴 = (𝑁 Mat 𝑅)
scmatmat.b 𝐵 = (Base‘𝐴)
scmatmat.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatmat ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))

Proof of Theorem scmatmat
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 scmatmat.a . . 3 𝐴 = (𝑁 Mat 𝑅)
3 scmatmat.b . . 3 𝐵 = (Base‘𝐴)
4 eqid 2737 . . 3 (1r𝐴) = (1r𝐴)
5 eqid 2737 . . 3 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatmat.s . . 3 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatel 22536 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴)))))
8 simpl 482 . 2 ((𝑀𝐵 ∧ ∃𝑐 ∈ (Base‘𝑅)𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴))) → 𝑀𝐵)
97, 8biimtrdi 253 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3070  cfv 6569  (class class class)co 7438  Fincfn 8993  Basecbs 17254   ·𝑠 cvsca 17311  1rcur 20208   Mat cmat 22436   ScMat cscmat 22520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-scmat 22522
This theorem is referenced by:  scmatsgrp  22550  scmatcrng  22552
  Copyright terms: Public domain W3C validator