![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatsgrp | Structured version Visualization version GIF version |
Description: The set of scalar matrices is a subgroup of the matrix group/algebra. (Contributed by AV, 20-Aug-2019.) (Revised by AV, 19-Dec-2019.) |
Ref | Expression |
---|---|
scmatid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatid.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatid.e | ⊢ 𝐸 = (Base‘𝑅) |
scmatid.0 | ⊢ 0 = (0g‘𝑅) |
scmatid.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatsgrp | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatid.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
2 | scmatid.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
3 | scmatid.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
4 | 1, 2, 3 | scmatmat 20641 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑧 ∈ 𝑆 → 𝑧 ∈ 𝐵)) |
5 | 4 | ssrdv 3804 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ⊆ 𝐵) |
6 | scmatid.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
7 | scmatid.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
8 | 1, 2, 6, 7, 3 | scmatid 20646 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r‘𝐴) ∈ 𝑆) |
9 | 8 | ne0d 4122 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ≠ ∅) |
10 | 1, 2, 6, 7, 3 | scmatsubcl 20649 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥(-g‘𝐴)𝑦) ∈ 𝑆) |
11 | 10 | ralrimivva 3152 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐴)𝑦) ∈ 𝑆) |
12 | 1 | matring 20574 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
13 | ringgrp 18868 | . . 3 ⊢ (𝐴 ∈ Ring → 𝐴 ∈ Grp) | |
14 | eqid 2799 | . . . 4 ⊢ (-g‘𝐴) = (-g‘𝐴) | |
15 | 2, 14 | issubg4 17926 | . . 3 ⊢ (𝐴 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐴)𝑦) ∈ 𝑆))) |
16 | 12, 13, 15 | 3syl 18 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑆 ∈ (SubGrp‘𝐴) ↔ (𝑆 ⊆ 𝐵 ∧ 𝑆 ≠ ∅ ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(-g‘𝐴)𝑦) ∈ 𝑆))) |
17 | 5, 9, 11, 16 | mpbir3and 1443 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ (SubGrp‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∀wral 3089 ⊆ wss 3769 ∅c0 4115 ‘cfv 6101 (class class class)co 6878 Fincfn 8195 Basecbs 16184 0gc0g 16415 Grpcgrp 17738 -gcsg 17740 SubGrpcsubg 17901 1rcur 18817 Ringcrg 18863 Mat cmat 20538 ScMat cscmat 20621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-ot 4377 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-map 8097 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-sup 8590 df-oi 8657 df-card 9051 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-fz 12581 df-fzo 12721 df-seq 13056 df-hash 13371 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-hom 16291 df-cco 16292 df-0g 16417 df-gsum 16418 df-prds 16423 df-pws 16425 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mulg 17857 df-subg 17904 df-ghm 17971 df-cntz 18062 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-subrg 19096 df-lmod 19183 df-lss 19251 df-sra 19495 df-rgmod 19496 df-dsmm 20401 df-frlm 20416 df-mamu 20515 df-mat 20539 df-scmat 20623 |
This theorem is referenced by: scmatsrng 20652 scmatghm 20665 |
Copyright terms: Public domain | W3C validator |