MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscmiddistr Structured version   Visualization version   GIF version

Theorem scmatscmiddistr 22514
Description: Distributive law for scalar and ring multiplication for scalar matrices expressed as multiplications of a scalar with the identity matrix. (Contributed by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatscmide.a 𝐴 = (𝑁 Mat 𝑅)
scmatscmide.b 𝐵 = (Base‘𝑅)
scmatscmide.0 0 = (0g𝑅)
scmatscmide.1 1 = (1r𝐴)
scmatscmide.m = ( ·𝑠𝐴)
scmatscmiddistr.t · = (.r𝑅)
scmatscmiddistr.m × = (.r𝐴)
Assertion
Ref Expression
scmatscmiddistr (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 · 𝑇) 1 ))

Proof of Theorem scmatscmiddistr
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 771 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑆𝐵)
2 scmatscmide.1 . . . . . . . 8 1 = (1r𝐴)
3 scmatscmide.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2737 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
5 scmatscmide.0 . . . . . . . . 9 0 = (0g𝑅)
6 eqid 2737 . . . . . . . . 9 (𝑁 DMat 𝑅) = (𝑁 DMat 𝑅)
73, 4, 5, 6dmatid 22501 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ (𝑁 DMat 𝑅))
82, 7eqeltrid 2845 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (𝑁 DMat 𝑅))
98adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 1 ∈ (𝑁 DMat 𝑅))
101, 9jca 511 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆𝐵1 ∈ (𝑁 DMat 𝑅)))
11 scmatscmide.b . . . . . 6 𝐵 = (Base‘𝑅)
12 scmatscmide.m . . . . . 6 = ( ·𝑠𝐴)
1311, 3, 4, 12, 6dmatscmcl 22509 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵1 ∈ (𝑁 DMat 𝑅))) → (𝑆 1 ) ∈ (𝑁 DMat 𝑅))
1410, 13syldan 591 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆 1 ) ∈ (𝑁 DMat 𝑅))
15 simprr 773 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑇𝐵)
1615, 9jca 511 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑇𝐵1 ∈ (𝑁 DMat 𝑅)))
1711, 3, 4, 12, 6dmatscmcl 22509 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑇𝐵1 ∈ (𝑁 DMat 𝑅))) → (𝑇 1 ) ∈ (𝑁 DMat 𝑅))
1816, 17syldan 591 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑇 1 ) ∈ (𝑁 DMat 𝑅))
1914, 18jca 511 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅)))
20 scmatscmiddistr.m . . . . 5 × = (.r𝐴)
2120oveqi 7444 . . . 4 ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 1 )(.r𝐴)(𝑇 1 ))
223, 4, 5, 6dmatmul 22503 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅))) → ((𝑆 1 )(.r𝐴)(𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
2321, 22eqtrid 2789 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅))) → ((𝑆 1 ) × (𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
2419, 23syldan 591 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
25 simpll 767 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑁 ∈ Fin)
26 simplr 769 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑅 ∈ Ring)
2725, 26, 13jca 1129 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵))
28273ad2ant1 1134 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵))
29 3simpc 1151 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
303, 11, 5, 2, 12scmatscmide 22513 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑆 1 )𝑗) = if(𝑖 = 𝑗, 𝑆, 0 ))
3128, 29, 30syl2anc 584 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑆 1 )𝑗) = if(𝑖 = 𝑗, 𝑆, 0 ))
3225, 26, 153jca 1129 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵))
33323ad2ant1 1134 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵))
343, 11, 5, 2, 12scmatscmide 22513 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇 1 )𝑗) = if(𝑖 = 𝑗, 𝑇, 0 ))
3533, 29, 34syl2anc 584 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑇 1 )𝑗) = if(𝑖 = 𝑗, 𝑇, 0 ))
3631, 35oveq12d 7449 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)) = (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )))
3736ifeq1d 4545 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 ) = if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 ))
3837mpoeq3dva 7510 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )))
39 iftrue 4531 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑖 = 𝑗, 𝑆, 0 ) = 𝑆)
40 iftrue 4531 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑖 = 𝑗, 𝑇, 0 ) = 𝑇)
4139, 40oveq12d 7449 . . . . . . 7 (𝑖 = 𝑗 → (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )) = (𝑆(.r𝑅)𝑇))
4241adantl 481 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑖 = 𝑗) → (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )) = (𝑆(.r𝑅)𝑇))
4342ifeq1da 4557 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 ) = if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))
4443mpoeq3dva 7510 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )))
45 eqidd 2738 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )))
46 eqeq12 2754 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖 = 𝑗𝑥 = 𝑦))
47 scmatscmiddistr.t . . . . . . . . . . . . 13 · = (.r𝑅)
4847eqcomi 2746 . . . . . . . . . . . 12 (.r𝑅) = ·
4948oveqi 7444 . . . . . . . . . . 11 (𝑆(.r𝑅)𝑇) = (𝑆 · 𝑇)
5049a1i 11 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑆(.r𝑅)𝑇) = (𝑆 · 𝑇))
5146, 50ifbieq1d 4550 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
5251adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
53 simprl 771 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
54 simprr 773 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
55 ovex 7464 . . . . . . . . . 10 (𝑆 · 𝑇) ∈ V
565fvexi 6920 . . . . . . . . . 10 0 ∈ V
5755, 56ifex 4576 . . . . . . . . 9 if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ) ∈ V
5857a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ) ∈ V)
5945, 52, 53, 54, 58ovmpod 7585 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6026, 1, 153jca 1129 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵))
6111, 47ringcl 20247 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵) → (𝑆 · 𝑇) ∈ 𝐵)
6260, 61syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆 · 𝑇) ∈ 𝐵)
6325, 26, 623jca 1129 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑆 · 𝑇) ∈ 𝐵))
643, 11, 5, 2, 12scmatscmide 22513 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑆 · 𝑇) ∈ 𝐵) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥((𝑆 · 𝑇) 1 )𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6563, 64sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥((𝑆 · 𝑇) 1 )𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6659, 65eqtr4d 2780 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦))
6766ralrimivva 3202 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦))
68 eqid 2737 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
6911, 68ringcl 20247 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵) → (𝑆(.r𝑅)𝑇) ∈ 𝐵)
7060, 69syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆(.r𝑅)𝑇) ∈ 𝐵)
7111, 5ring0cl 20264 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0𝐵)
7271adantl 481 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0𝐵)
7372adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 0𝐵)
7470, 73ifcld 4572 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) ∈ 𝐵)
75743ad2ant1 1134 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) ∈ 𝐵)
763, 11, 4, 25, 26, 75matbas2d 22429 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) ∈ (Base‘𝐴))
773matring 22449 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
784, 2ringidcl 20262 . . . . . . . . . 10 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
7977, 78syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
8079adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 1 ∈ (Base‘𝐴))
8162, 80jca 511 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 · 𝑇) ∈ 𝐵1 ∈ (Base‘𝐴)))
8211, 3, 4, 12matvscl 22437 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 · 𝑇) ∈ 𝐵1 ∈ (Base‘𝐴))) → ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴))
8381, 82syldan 591 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴))
843, 4eqmat 22430 . . . . . 6 (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) ∈ (Base‘𝐴) ∧ ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦)))
8576, 83, 84syl2anc 584 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦)))
8667, 85mpbird 257 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ))
8744, 86eqtrd 2777 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )) = ((𝑆 · 𝑇) 1 ))
8838, 87eqtrd 2777 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )) = ((𝑆 · 𝑇) 1 ))
8924, 88eqtrd 2777 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 · 𝑇) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  ifcif 4525  cfv 6561  (class class class)co 7431  cmpo 7433  Fincfn 8985  Basecbs 17247  .rcmulr 17298   ·𝑠 cvsca 17301  0gc0g 17484  1rcur 20178  Ringcrg 20230   Mat cmat 22411   DMat cdmat 22494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-subrg 20570  df-lmod 20860  df-lss 20930  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767  df-mamu 22395  df-mat 22412  df-dmat 22496
This theorem is referenced by:  scmatmulcl  22524  scmatmhm  22540
  Copyright terms: Public domain W3C validator