MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscmiddistr Structured version   Visualization version   GIF version

Theorem scmatscmiddistr 21755
Description: Distributive law for scalar and ring multiplication for scalar matrices expressed as multiplications of a scalar with the identity matrix. (Contributed by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatscmide.a 𝐴 = (𝑁 Mat 𝑅)
scmatscmide.b 𝐵 = (Base‘𝑅)
scmatscmide.0 0 = (0g𝑅)
scmatscmide.1 1 = (1r𝐴)
scmatscmide.m = ( ·𝑠𝐴)
scmatscmiddistr.t · = (.r𝑅)
scmatscmiddistr.m × = (.r𝐴)
Assertion
Ref Expression
scmatscmiddistr (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 · 𝑇) 1 ))

Proof of Theorem scmatscmiddistr
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 768 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑆𝐵)
2 scmatscmide.1 . . . . . . . 8 1 = (1r𝐴)
3 scmatscmide.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2736 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
5 scmatscmide.0 . . . . . . . . 9 0 = (0g𝑅)
6 eqid 2736 . . . . . . . . 9 (𝑁 DMat 𝑅) = (𝑁 DMat 𝑅)
73, 4, 5, 6dmatid 21742 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ (𝑁 DMat 𝑅))
82, 7eqeltrid 2841 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (𝑁 DMat 𝑅))
98adantr 481 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 1 ∈ (𝑁 DMat 𝑅))
101, 9jca 512 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆𝐵1 ∈ (𝑁 DMat 𝑅)))
11 scmatscmide.b . . . . . 6 𝐵 = (Base‘𝑅)
12 scmatscmide.m . . . . . 6 = ( ·𝑠𝐴)
1311, 3, 4, 12, 6dmatscmcl 21750 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵1 ∈ (𝑁 DMat 𝑅))) → (𝑆 1 ) ∈ (𝑁 DMat 𝑅))
1410, 13syldan 591 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆 1 ) ∈ (𝑁 DMat 𝑅))
15 simprr 770 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑇𝐵)
1615, 9jca 512 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑇𝐵1 ∈ (𝑁 DMat 𝑅)))
1711, 3, 4, 12, 6dmatscmcl 21750 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑇𝐵1 ∈ (𝑁 DMat 𝑅))) → (𝑇 1 ) ∈ (𝑁 DMat 𝑅))
1816, 17syldan 591 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑇 1 ) ∈ (𝑁 DMat 𝑅))
1914, 18jca 512 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅)))
20 scmatscmiddistr.m . . . . 5 × = (.r𝐴)
2120oveqi 7342 . . . 4 ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 1 )(.r𝐴)(𝑇 1 ))
223, 4, 5, 6dmatmul 21744 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅))) → ((𝑆 1 )(.r𝐴)(𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
2321, 22eqtrid 2788 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅))) → ((𝑆 1 ) × (𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
2419, 23syldan 591 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
25 simpll 764 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑁 ∈ Fin)
26 simplr 766 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑅 ∈ Ring)
2725, 26, 13jca 1127 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵))
28273ad2ant1 1132 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵))
29 3simpc 1149 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
303, 11, 5, 2, 12scmatscmide 21754 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑆 1 )𝑗) = if(𝑖 = 𝑗, 𝑆, 0 ))
3128, 29, 30syl2anc 584 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑆 1 )𝑗) = if(𝑖 = 𝑗, 𝑆, 0 ))
3225, 26, 153jca 1127 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵))
33323ad2ant1 1132 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵))
343, 11, 5, 2, 12scmatscmide 21754 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇 1 )𝑗) = if(𝑖 = 𝑗, 𝑇, 0 ))
3533, 29, 34syl2anc 584 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑇 1 )𝑗) = if(𝑖 = 𝑗, 𝑇, 0 ))
3631, 35oveq12d 7347 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)) = (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )))
3736ifeq1d 4491 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 ) = if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 ))
3837mpoeq3dva 7406 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )))
39 iftrue 4478 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑖 = 𝑗, 𝑆, 0 ) = 𝑆)
40 iftrue 4478 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑖 = 𝑗, 𝑇, 0 ) = 𝑇)
4139, 40oveq12d 7347 . . . . . . 7 (𝑖 = 𝑗 → (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )) = (𝑆(.r𝑅)𝑇))
4241adantl 482 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑖 = 𝑗) → (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )) = (𝑆(.r𝑅)𝑇))
4342ifeq1da 4503 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 ) = if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))
4443mpoeq3dva 7406 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )))
45 eqidd 2737 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )))
46 eqeq12 2753 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖 = 𝑗𝑥 = 𝑦))
47 scmatscmiddistr.t . . . . . . . . . . . . 13 · = (.r𝑅)
4847eqcomi 2745 . . . . . . . . . . . 12 (.r𝑅) = ·
4948oveqi 7342 . . . . . . . . . . 11 (𝑆(.r𝑅)𝑇) = (𝑆 · 𝑇)
5049a1i 11 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑆(.r𝑅)𝑇) = (𝑆 · 𝑇))
5146, 50ifbieq1d 4496 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
5251adantl 482 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
53 simprl 768 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
54 simprr 770 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
55 ovex 7362 . . . . . . . . . 10 (𝑆 · 𝑇) ∈ V
565fvexi 6833 . . . . . . . . . 10 0 ∈ V
5755, 56ifex 4522 . . . . . . . . 9 if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ) ∈ V
5857a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ) ∈ V)
5945, 52, 53, 54, 58ovmpod 7479 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6026, 1, 153jca 1127 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵))
6111, 47ringcl 19887 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵) → (𝑆 · 𝑇) ∈ 𝐵)
6260, 61syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆 · 𝑇) ∈ 𝐵)
6325, 26, 623jca 1127 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑆 · 𝑇) ∈ 𝐵))
643, 11, 5, 2, 12scmatscmide 21754 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑆 · 𝑇) ∈ 𝐵) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥((𝑆 · 𝑇) 1 )𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6563, 64sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥((𝑆 · 𝑇) 1 )𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6659, 65eqtr4d 2779 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦))
6766ralrimivva 3193 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦))
68 eqid 2736 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
6911, 68ringcl 19887 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵) → (𝑆(.r𝑅)𝑇) ∈ 𝐵)
7060, 69syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆(.r𝑅)𝑇) ∈ 𝐵)
7111, 5ring0cl 19895 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0𝐵)
7271adantl 482 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0𝐵)
7372adantr 481 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 0𝐵)
7470, 73ifcld 4518 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) ∈ 𝐵)
75743ad2ant1 1132 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) ∈ 𝐵)
763, 11, 4, 25, 26, 75matbas2d 21670 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) ∈ (Base‘𝐴))
773matring 21690 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
784, 2ringidcl 19894 . . . . . . . . . 10 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
7977, 78syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
8079adantr 481 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 1 ∈ (Base‘𝐴))
8162, 80jca 512 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 · 𝑇) ∈ 𝐵1 ∈ (Base‘𝐴)))
8211, 3, 4, 12matvscl 21678 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 · 𝑇) ∈ 𝐵1 ∈ (Base‘𝐴))) → ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴))
8381, 82syldan 591 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴))
843, 4eqmat 21671 . . . . . 6 (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) ∈ (Base‘𝐴) ∧ ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦)))
8576, 83, 84syl2anc 584 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦)))
8667, 85mpbird 256 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ))
8744, 86eqtrd 2776 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )) = ((𝑆 · 𝑇) 1 ))
8838, 87eqtrd 2776 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )) = ((𝑆 · 𝑇) 1 ))
8924, 88eqtrd 2776 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 · 𝑇) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wral 3061  Vcvv 3441  ifcif 4472  cfv 6473  (class class class)co 7329  cmpo 7331  Fincfn 8796  Basecbs 17001  .rcmulr 17052   ·𝑠 cvsca 17055  0gc0g 17239  1rcur 19824  Ringcrg 19870   Mat cmat 21652   DMat cdmat 21735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-tp 4577  df-op 4579  df-ot 4581  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-se 5570  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-isom 6482  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-of 7587  df-om 7773  df-1st 7891  df-2nd 7892  df-supp 8040  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-map 8680  df-ixp 8749  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-fsupp 9219  df-sup 9291  df-oi 9359  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-3 12130  df-4 12131  df-5 12132  df-6 12133  df-7 12134  df-8 12135  df-9 12136  df-n0 12327  df-z 12413  df-dec 12531  df-uz 12676  df-fz 13333  df-fzo 13476  df-seq 13815  df-hash 14138  df-struct 16937  df-sets 16954  df-slot 16972  df-ndx 16984  df-base 17002  df-ress 17031  df-plusg 17064  df-mulr 17065  df-sca 17067  df-vsca 17068  df-ip 17069  df-tset 17070  df-ple 17071  df-ds 17073  df-hom 17075  df-cco 17076  df-0g 17241  df-gsum 17242  df-prds 17247  df-pws 17249  df-mre 17384  df-mrc 17385  df-acs 17387  df-mgm 18415  df-sgrp 18464  df-mnd 18475  df-mhm 18519  df-submnd 18520  df-grp 18668  df-minusg 18669  df-sbg 18670  df-mulg 18789  df-subg 18840  df-ghm 18920  df-cntz 19011  df-cmn 19475  df-abl 19476  df-mgp 19808  df-ur 19825  df-ring 19872  df-subrg 20119  df-lmod 20223  df-lss 20292  df-sra 20532  df-rgmod 20533  df-dsmm 21037  df-frlm 21052  df-mamu 21631  df-mat 21653  df-dmat 21737
This theorem is referenced by:  scmatmulcl  21765  scmatmhm  21781
  Copyright terms: Public domain W3C validator