MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscmiddistr Structured version   Visualization version   GIF version

Theorem scmatscmiddistr 22402
Description: Distributive law for scalar and ring multiplication for scalar matrices expressed as multiplications of a scalar with the identity matrix. (Contributed by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatscmide.a 𝐴 = (𝑁 Mat 𝑅)
scmatscmide.b 𝐵 = (Base‘𝑅)
scmatscmide.0 0 = (0g𝑅)
scmatscmide.1 1 = (1r𝐴)
scmatscmide.m = ( ·𝑠𝐴)
scmatscmiddistr.t · = (.r𝑅)
scmatscmiddistr.m × = (.r𝐴)
Assertion
Ref Expression
scmatscmiddistr (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 · 𝑇) 1 ))

Proof of Theorem scmatscmiddistr
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑆𝐵)
2 scmatscmide.1 . . . . . . . 8 1 = (1r𝐴)
3 scmatscmide.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2730 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
5 scmatscmide.0 . . . . . . . . 9 0 = (0g𝑅)
6 eqid 2730 . . . . . . . . 9 (𝑁 DMat 𝑅) = (𝑁 DMat 𝑅)
73, 4, 5, 6dmatid 22389 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ (𝑁 DMat 𝑅))
82, 7eqeltrid 2833 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (𝑁 DMat 𝑅))
98adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 1 ∈ (𝑁 DMat 𝑅))
101, 9jca 511 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆𝐵1 ∈ (𝑁 DMat 𝑅)))
11 scmatscmide.b . . . . . 6 𝐵 = (Base‘𝑅)
12 scmatscmide.m . . . . . 6 = ( ·𝑠𝐴)
1311, 3, 4, 12, 6dmatscmcl 22397 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵1 ∈ (𝑁 DMat 𝑅))) → (𝑆 1 ) ∈ (𝑁 DMat 𝑅))
1410, 13syldan 591 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆 1 ) ∈ (𝑁 DMat 𝑅))
15 simprr 772 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑇𝐵)
1615, 9jca 511 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑇𝐵1 ∈ (𝑁 DMat 𝑅)))
1711, 3, 4, 12, 6dmatscmcl 22397 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑇𝐵1 ∈ (𝑁 DMat 𝑅))) → (𝑇 1 ) ∈ (𝑁 DMat 𝑅))
1816, 17syldan 591 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑇 1 ) ∈ (𝑁 DMat 𝑅))
1914, 18jca 511 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅)))
20 scmatscmiddistr.m . . . . 5 × = (.r𝐴)
2120oveqi 7403 . . . 4 ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 1 )(.r𝐴)(𝑇 1 ))
223, 4, 5, 6dmatmul 22391 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅))) → ((𝑆 1 )(.r𝐴)(𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
2321, 22eqtrid 2777 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅))) → ((𝑆 1 ) × (𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
2419, 23syldan 591 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
25 simpll 766 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑁 ∈ Fin)
26 simplr 768 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑅 ∈ Ring)
2725, 26, 13jca 1128 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵))
28273ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵))
29 3simpc 1150 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
303, 11, 5, 2, 12scmatscmide 22401 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑆 1 )𝑗) = if(𝑖 = 𝑗, 𝑆, 0 ))
3128, 29, 30syl2anc 584 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑆 1 )𝑗) = if(𝑖 = 𝑗, 𝑆, 0 ))
3225, 26, 153jca 1128 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵))
33323ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵))
343, 11, 5, 2, 12scmatscmide 22401 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇 1 )𝑗) = if(𝑖 = 𝑗, 𝑇, 0 ))
3533, 29, 34syl2anc 584 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑇 1 )𝑗) = if(𝑖 = 𝑗, 𝑇, 0 ))
3631, 35oveq12d 7408 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)) = (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )))
3736ifeq1d 4511 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 ) = if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 ))
3837mpoeq3dva 7469 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )))
39 iftrue 4497 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑖 = 𝑗, 𝑆, 0 ) = 𝑆)
40 iftrue 4497 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑖 = 𝑗, 𝑇, 0 ) = 𝑇)
4139, 40oveq12d 7408 . . . . . . 7 (𝑖 = 𝑗 → (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )) = (𝑆(.r𝑅)𝑇))
4241adantl 481 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑖 = 𝑗) → (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )) = (𝑆(.r𝑅)𝑇))
4342ifeq1da 4523 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 ) = if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))
4443mpoeq3dva 7469 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )))
45 eqidd 2731 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )))
46 eqeq12 2747 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖 = 𝑗𝑥 = 𝑦))
47 scmatscmiddistr.t . . . . . . . . . . . . 13 · = (.r𝑅)
4847eqcomi 2739 . . . . . . . . . . . 12 (.r𝑅) = ·
4948oveqi 7403 . . . . . . . . . . 11 (𝑆(.r𝑅)𝑇) = (𝑆 · 𝑇)
5049a1i 11 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑆(.r𝑅)𝑇) = (𝑆 · 𝑇))
5146, 50ifbieq1d 4516 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
5251adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
53 simprl 770 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
54 simprr 772 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
55 ovex 7423 . . . . . . . . . 10 (𝑆 · 𝑇) ∈ V
565fvexi 6875 . . . . . . . . . 10 0 ∈ V
5755, 56ifex 4542 . . . . . . . . 9 if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ) ∈ V
5857a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ) ∈ V)
5945, 52, 53, 54, 58ovmpod 7544 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6026, 1, 153jca 1128 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵))
6111, 47ringcl 20166 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵) → (𝑆 · 𝑇) ∈ 𝐵)
6260, 61syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆 · 𝑇) ∈ 𝐵)
6325, 26, 623jca 1128 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑆 · 𝑇) ∈ 𝐵))
643, 11, 5, 2, 12scmatscmide 22401 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑆 · 𝑇) ∈ 𝐵) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥((𝑆 · 𝑇) 1 )𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6563, 64sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥((𝑆 · 𝑇) 1 )𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6659, 65eqtr4d 2768 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦))
6766ralrimivva 3181 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦))
68 eqid 2730 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
6911, 68ringcl 20166 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵) → (𝑆(.r𝑅)𝑇) ∈ 𝐵)
7060, 69syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆(.r𝑅)𝑇) ∈ 𝐵)
7111, 5ring0cl 20183 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0𝐵)
7271adantl 481 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0𝐵)
7372adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 0𝐵)
7470, 73ifcld 4538 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) ∈ 𝐵)
75743ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) ∈ 𝐵)
763, 11, 4, 25, 26, 75matbas2d 22317 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) ∈ (Base‘𝐴))
773matring 22337 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
784, 2ringidcl 20181 . . . . . . . . . 10 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
7977, 78syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
8079adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 1 ∈ (Base‘𝐴))
8162, 80jca 511 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 · 𝑇) ∈ 𝐵1 ∈ (Base‘𝐴)))
8211, 3, 4, 12matvscl 22325 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 · 𝑇) ∈ 𝐵1 ∈ (Base‘𝐴))) → ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴))
8381, 82syldan 591 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴))
843, 4eqmat 22318 . . . . . 6 (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) ∈ (Base‘𝐴) ∧ ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦)))
8576, 83, 84syl2anc 584 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦)))
8667, 85mpbird 257 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ))
8744, 86eqtrd 2765 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )) = ((𝑆 · 𝑇) 1 ))
8838, 87eqtrd 2765 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )) = ((𝑆 · 𝑇) 1 ))
8924, 88eqtrd 2765 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 · 𝑇) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  Vcvv 3450  ifcif 4491  cfv 6514  (class class class)co 7390  cmpo 7392  Fincfn 8921  Basecbs 17186  .rcmulr 17228   ·𝑠 cvsca 17231  0gc0g 17409  1rcur 20097  Ringcrg 20149   Mat cmat 22301   DMat cdmat 22382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-mamu 22285  df-mat 22302  df-dmat 22384
This theorem is referenced by:  scmatmulcl  22412  scmatmhm  22428
  Copyright terms: Public domain W3C validator