MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatscmiddistr Structured version   Visualization version   GIF version

Theorem scmatscmiddistr 22424
Description: Distributive law for scalar and ring multiplication for scalar matrices expressed as multiplications of a scalar with the identity matrix. (Contributed by AV, 19-Dec-2019.)
Hypotheses
Ref Expression
scmatscmide.a 𝐴 = (𝑁 Mat 𝑅)
scmatscmide.b 𝐵 = (Base‘𝑅)
scmatscmide.0 0 = (0g𝑅)
scmatscmide.1 1 = (1r𝐴)
scmatscmide.m = ( ·𝑠𝐴)
scmatscmiddistr.t · = (.r𝑅)
scmatscmiddistr.m × = (.r𝐴)
Assertion
Ref Expression
scmatscmiddistr (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 · 𝑇) 1 ))

Proof of Theorem scmatscmiddistr
Dummy variables 𝑖 𝑗 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑆𝐵)
2 scmatscmide.1 . . . . . . . 8 1 = (1r𝐴)
3 scmatscmide.a . . . . . . . . 9 𝐴 = (𝑁 Mat 𝑅)
4 eqid 2733 . . . . . . . . 9 (Base‘𝐴) = (Base‘𝐴)
5 scmatscmide.0 . . . . . . . . 9 0 = (0g𝑅)
6 eqid 2733 . . . . . . . . 9 (𝑁 DMat 𝑅) = (𝑁 DMat 𝑅)
73, 4, 5, 6dmatid 22411 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝐴) ∈ (𝑁 DMat 𝑅))
82, 7eqeltrid 2837 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (𝑁 DMat 𝑅))
98adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 1 ∈ (𝑁 DMat 𝑅))
101, 9jca 511 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆𝐵1 ∈ (𝑁 DMat 𝑅)))
11 scmatscmide.b . . . . . 6 𝐵 = (Base‘𝑅)
12 scmatscmide.m . . . . . 6 = ( ·𝑠𝐴)
1311, 3, 4, 12, 6dmatscmcl 22419 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵1 ∈ (𝑁 DMat 𝑅))) → (𝑆 1 ) ∈ (𝑁 DMat 𝑅))
1410, 13syldan 591 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆 1 ) ∈ (𝑁 DMat 𝑅))
15 simprr 772 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑇𝐵)
1615, 9jca 511 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑇𝐵1 ∈ (𝑁 DMat 𝑅)))
1711, 3, 4, 12, 6dmatscmcl 22419 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑇𝐵1 ∈ (𝑁 DMat 𝑅))) → (𝑇 1 ) ∈ (𝑁 DMat 𝑅))
1816, 17syldan 591 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑇 1 ) ∈ (𝑁 DMat 𝑅))
1914, 18jca 511 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅)))
20 scmatscmiddistr.m . . . . 5 × = (.r𝐴)
2120oveqi 7365 . . . 4 ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 1 )(.r𝐴)(𝑇 1 ))
223, 4, 5, 6dmatmul 22413 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅))) → ((𝑆 1 )(.r𝐴)(𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
2321, 22eqtrid 2780 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 1 ) ∈ (𝑁 DMat 𝑅) ∧ (𝑇 1 ) ∈ (𝑁 DMat 𝑅))) → ((𝑆 1 ) × (𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
2419, 23syldan 591 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )))
25 simpll 766 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑁 ∈ Fin)
26 simplr 768 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 𝑅 ∈ Ring)
2725, 26, 13jca 1128 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵))
28273ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵))
29 3simpc 1150 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖𝑁𝑗𝑁))
303, 11, 5, 2, 12scmatscmide 22423 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑆𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑆 1 )𝑗) = if(𝑖 = 𝑗, 𝑆, 0 ))
3128, 29, 30syl2anc 584 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑆 1 )𝑗) = if(𝑖 = 𝑗, 𝑆, 0 ))
3225, 26, 153jca 1128 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵))
33323ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵))
343, 11, 5, 2, 12scmatscmide 22423 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑇𝐵) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖(𝑇 1 )𝑗) = if(𝑖 = 𝑗, 𝑇, 0 ))
3533, 29, 34syl2anc 584 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → (𝑖(𝑇 1 )𝑗) = if(𝑖 = 𝑗, 𝑇, 0 ))
3631, 35oveq12d 7370 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)) = (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )))
3736ifeq1d 4494 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 ) = if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 ))
3837mpoeq3dva 7429 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )))
39 iftrue 4480 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑖 = 𝑗, 𝑆, 0 ) = 𝑆)
40 iftrue 4480 . . . . . . . 8 (𝑖 = 𝑗 → if(𝑖 = 𝑗, 𝑇, 0 ) = 𝑇)
4139, 40oveq12d 7370 . . . . . . 7 (𝑖 = 𝑗 → (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )) = (𝑆(.r𝑅)𝑇))
4241adantl 481 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑖 = 𝑗) → (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )) = (𝑆(.r𝑅)𝑇))
4342ifeq1da 4506 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 ) = if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))
4443mpoeq3dva 7429 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )))
45 eqidd 2734 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )))
46 eqeq12 2750 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑖 = 𝑗𝑥 = 𝑦))
47 scmatscmiddistr.t . . . . . . . . . . . . 13 · = (.r𝑅)
4847eqcomi 2742 . . . . . . . . . . . 12 (.r𝑅) = ·
4948oveqi 7365 . . . . . . . . . . 11 (𝑆(.r𝑅)𝑇) = (𝑆 · 𝑇)
5049a1i 11 . . . . . . . . . 10 ((𝑖 = 𝑥𝑗 = 𝑦) → (𝑆(.r𝑅)𝑇) = (𝑆 · 𝑇))
5146, 50ifbieq1d 4499 . . . . . . . . 9 ((𝑖 = 𝑥𝑗 = 𝑦) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
5251adantl 481 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) ∧ (𝑖 = 𝑥𝑗 = 𝑦)) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
53 simprl 770 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
54 simprr 772 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
55 ovex 7385 . . . . . . . . . 10 (𝑆 · 𝑇) ∈ V
565fvexi 6842 . . . . . . . . . 10 0 ∈ V
5755, 56ifex 4525 . . . . . . . . 9 if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ) ∈ V
5857a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ) ∈ V)
5945, 52, 53, 54, 58ovmpod 7504 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6026, 1, 153jca 1128 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵))
6111, 47ringcl 20170 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵) → (𝑆 · 𝑇) ∈ 𝐵)
6260, 61syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆 · 𝑇) ∈ 𝐵)
6325, 26, 623jca 1128 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑆 · 𝑇) ∈ 𝐵))
643, 11, 5, 2, 12scmatscmide 22423 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ (𝑆 · 𝑇) ∈ 𝐵) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥((𝑆 · 𝑇) 1 )𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6563, 64sylan 580 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥((𝑆 · 𝑇) 1 )𝑦) = if(𝑥 = 𝑦, (𝑆 · 𝑇), 0 ))
6659, 65eqtr4d 2771 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦))
6766ralrimivva 3176 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦))
68 eqid 2733 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
6911, 68ringcl 20170 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑆𝐵𝑇𝐵) → (𝑆(.r𝑅)𝑇) ∈ 𝐵)
7060, 69syl 17 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑆(.r𝑅)𝑇) ∈ 𝐵)
7111, 5ring0cl 20187 . . . . . . . . . . 11 (𝑅 ∈ Ring → 0𝐵)
7271adantl 481 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0𝐵)
7372adantr 480 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 0𝐵)
7470, 73ifcld 4521 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) ∈ 𝐵)
75743ad2ant1 1133 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) ∧ 𝑖𝑁𝑗𝑁) → if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ) ∈ 𝐵)
763, 11, 4, 25, 26, 75matbas2d 22339 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) ∈ (Base‘𝐴))
773matring 22359 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
784, 2ringidcl 20185 . . . . . . . . . 10 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
7977, 78syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
8079adantr 480 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → 1 ∈ (Base‘𝐴))
8162, 80jca 511 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 · 𝑇) ∈ 𝐵1 ∈ (Base‘𝐴)))
8211, 3, 4, 12matvscl 22347 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ ((𝑆 · 𝑇) ∈ 𝐵1 ∈ (Base‘𝐴))) → ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴))
8381, 82syldan 591 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴))
843, 4eqmat 22340 . . . . . 6 (((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) ∈ (Base‘𝐴) ∧ ((𝑆 · 𝑇) 1 ) ∈ (Base‘𝐴)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦)))
8576, 83, 84syl2anc 584 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ) ↔ ∀𝑥𝑁𝑦𝑁 (𝑥(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 ))𝑦) = (𝑥((𝑆 · 𝑇) 1 )𝑦)))
8667, 85mpbird 257 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (𝑆(.r𝑅)𝑇), 0 )) = ((𝑆 · 𝑇) 1 ))
8744, 86eqtrd 2768 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, (if(𝑖 = 𝑗, 𝑆, 0 )(.r𝑅)if(𝑖 = 𝑗, 𝑇, 0 )), 0 )) = ((𝑆 · 𝑇) 1 ))
8838, 87eqtrd 2768 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝑗, ((𝑖(𝑆 1 )𝑗)(.r𝑅)(𝑖(𝑇 1 )𝑗)), 0 )) = ((𝑆 · 𝑇) 1 ))
8924, 88eqtrd 2768 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑆𝐵𝑇𝐵)) → ((𝑆 1 ) × (𝑇 1 )) = ((𝑆 · 𝑇) 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  ifcif 4474  cfv 6486  (class class class)co 7352  cmpo 7354  Fincfn 8875  Basecbs 17122  .rcmulr 17164   ·𝑠 cvsca 17167  0gc0g 17345  1rcur 20101  Ringcrg 20153   Mat cmat 22323   DMat cdmat 22404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-subrg 20487  df-lmod 20797  df-lss 20867  df-sra 21109  df-rgmod 21110  df-dsmm 21671  df-frlm 21686  df-mamu 22307  df-mat 22324  df-dmat 22406
This theorem is referenced by:  scmatmulcl  22434  scmatmhm  22450
  Copyright terms: Public domain W3C validator