Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatel | Structured version Visualization version GIF version |
Description: An 𝑁 x 𝑁 scalar matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
scmatval.k | ⊢ 𝐾 = (Base‘𝑅) |
scmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatval.1 | ⊢ 1 = (1r‘𝐴) |
scmatval.t | ⊢ · = ( ·𝑠 ‘𝐴) |
scmatval.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatel | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | scmatval.1 | . . . 4 ⊢ 1 = (1r‘𝐴) | |
5 | scmatval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
6 | scmatval.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatval 21561 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )}) |
8 | 7 | eleq2d 2824 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )})) |
9 | eqeq1 2742 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑚 = (𝑐 · 1 ) ↔ 𝑀 = (𝑐 · 1 ))) | |
10 | 9 | rexbidv 3225 | . . 3 ⊢ (𝑚 = 𝑀 → (∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 ) ↔ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 ))) |
11 | 10 | elrab 3617 | . 2 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )} ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 ))) |
12 | 8, 11 | bitrdi 286 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 Basecbs 16840 ·𝑠 cvsca 16892 1rcur 19652 Mat cmat 21464 ScMat cscmat 21546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-scmat 21548 |
This theorem is referenced by: scmatscmid 21563 scmatmat 21566 scmatid 21571 scmataddcl 21573 scmatsubcl 21574 scmatmulcl 21575 smatvscl 21581 scmatrhmcl 21585 mat0scmat 21595 mat1scmat 21596 chmaidscmat 21905 |
Copyright terms: Public domain | W3C validator |