| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scmatel | Structured version Visualization version GIF version | ||
| Description: An 𝑁 x 𝑁 scalar matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| Ref | Expression |
|---|---|
| scmatval.k | ⊢ 𝐾 = (Base‘𝑅) |
| scmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| scmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
| scmatval.1 | ⊢ 1 = (1r‘𝐴) |
| scmatval.t | ⊢ · = ( ·𝑠 ‘𝐴) |
| scmatval.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
| Ref | Expression |
|---|---|
| scmatel | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scmatval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 2 | scmatval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | scmatval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | scmatval.1 | . . . 4 ⊢ 1 = (1r‘𝐴) | |
| 5 | scmatval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 6 | scmatval.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | scmatval 22398 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )}) |
| 8 | 7 | eleq2d 2815 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )})) |
| 9 | eqeq1 2734 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑚 = (𝑐 · 1 ) ↔ 𝑀 = (𝑐 · 1 ))) | |
| 10 | 9 | rexbidv 3158 | . . 3 ⊢ (𝑚 = 𝑀 → (∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 ) ↔ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 ))) |
| 11 | 10 | elrab 3662 | . 2 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )} ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 ))) |
| 12 | 8, 11 | bitrdi 287 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 {crab 3408 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 Basecbs 17186 ·𝑠 cvsca 17231 1rcur 20097 Mat cmat 22301 ScMat cscmat 22383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-scmat 22385 |
| This theorem is referenced by: scmatscmid 22400 scmatmat 22403 scmatid 22408 scmataddcl 22410 scmatsubcl 22411 scmatmulcl 22412 smatvscl 22418 scmatrhmcl 22422 mat0scmat 22432 mat1scmat 22433 chmaidscmat 22742 |
| Copyright terms: Public domain | W3C validator |