| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scmatel | Structured version Visualization version GIF version | ||
| Description: An 𝑁 x 𝑁 scalar matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
| Ref | Expression |
|---|---|
| scmatval.k | ⊢ 𝐾 = (Base‘𝑅) |
| scmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| scmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
| scmatval.1 | ⊢ 1 = (1r‘𝐴) |
| scmatval.t | ⊢ · = ( ·𝑠 ‘𝐴) |
| scmatval.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
| Ref | Expression |
|---|---|
| scmatel | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scmatval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
| 2 | scmatval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | scmatval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
| 4 | scmatval.1 | . . . 4 ⊢ 1 = (1r‘𝐴) | |
| 5 | scmatval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
| 6 | scmatval.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | scmatval 22442 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )}) |
| 8 | 7 | eleq2d 2820 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )})) |
| 9 | eqeq1 2739 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑚 = (𝑐 · 1 ) ↔ 𝑀 = (𝑐 · 1 ))) | |
| 10 | 9 | rexbidv 3164 | . . 3 ⊢ (𝑚 = 𝑀 → (∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 ) ↔ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 ))) |
| 11 | 10 | elrab 3671 | . 2 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )} ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 ))) |
| 12 | 8, 11 | bitrdi 287 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 Basecbs 17228 ·𝑠 cvsca 17275 1rcur 20141 Mat cmat 22345 ScMat cscmat 22427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-scmat 22429 |
| This theorem is referenced by: scmatscmid 22444 scmatmat 22447 scmatid 22452 scmataddcl 22454 scmatsubcl 22455 scmatmulcl 22456 smatvscl 22462 scmatrhmcl 22466 mat0scmat 22476 mat1scmat 22477 chmaidscmat 22786 |
| Copyright terms: Public domain | W3C validator |