![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatel | Structured version Visualization version GIF version |
Description: An 𝑁 x 𝑁 scalar matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
scmatval.k | ⊢ 𝐾 = (Base‘𝑅) |
scmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatval.1 | ⊢ 1 = (1r‘𝐴) |
scmatval.t | ⊢ · = ( ·𝑠 ‘𝐴) |
scmatval.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatel | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | scmatval.1 | . . . 4 ⊢ 1 = (1r‘𝐴) | |
5 | scmatval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
6 | scmatval.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatval 21853 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )}) |
8 | 7 | eleq2d 2823 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )})) |
9 | eqeq1 2740 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑚 = (𝑐 · 1 ) ↔ 𝑀 = (𝑐 · 1 ))) | |
10 | 9 | rexbidv 3175 | . . 3 ⊢ (𝑚 = 𝑀 → (∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 ) ↔ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 ))) |
11 | 10 | elrab 3645 | . 2 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )} ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 ))) |
12 | 8, 11 | bitrdi 286 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3073 {crab 3407 ‘cfv 6496 (class class class)co 7357 Fincfn 8883 Basecbs 17083 ·𝑠 cvsca 17137 1rcur 19913 Mat cmat 21754 ScMat cscmat 21838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pr 5384 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-iota 6448 df-fun 6498 df-fv 6504 df-ov 7360 df-oprab 7361 df-mpo 7362 df-scmat 21840 |
This theorem is referenced by: scmatscmid 21855 scmatmat 21858 scmatid 21863 scmataddcl 21865 scmatsubcl 21866 scmatmulcl 21867 smatvscl 21873 scmatrhmcl 21877 mat0scmat 21887 mat1scmat 21888 chmaidscmat 22197 |
Copyright terms: Public domain | W3C validator |