MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatel Structured version   Visualization version   GIF version

Theorem scmatel 22413
Description: An 𝑁 x 𝑁 scalar matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatval.k 𝐾 = (Base‘𝑅)
scmatval.a 𝐴 = (𝑁 Mat 𝑅)
scmatval.b 𝐵 = (Base‘𝐴)
scmatval.1 1 = (1r𝐴)
scmatval.t · = ( ·𝑠𝐴)
scmatval.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatel ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))))
Distinct variable groups:   𝐾,𝑐   𝑁,𝑐   𝑅,𝑐   𝑀,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)   𝑆(𝑐)   · (𝑐)   1 (𝑐)   𝑉(𝑐)

Proof of Theorem scmatel
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 scmatval.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatval.b . . . 4 𝐵 = (Base‘𝐴)
4 scmatval.1 . . . 4 1 = (1r𝐴)
5 scmatval.t . . . 4 · = ( ·𝑠𝐴)
6 scmatval.s . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatval 22412 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
87eleq2d 2815 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )}))
9 eqeq1 2734 . . . 4 (𝑚 = 𝑀 → (𝑚 = (𝑐 · 1 ) ↔ 𝑀 = (𝑐 · 1 )))
109rexbidv 3154 . . 3 (𝑚 = 𝑀 → (∃𝑐𝐾 𝑚 = (𝑐 · 1 ) ↔ ∃𝑐𝐾 𝑀 = (𝑐 · 1 )))
1110elrab 3645 . 2 (𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )} ↔ (𝑀𝐵 ∧ ∃𝑐𝐾 𝑀 = (𝑐 · 1 )))
128, 11bitrdi 287 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wrex 3054  {crab 3393  cfv 6477  (class class class)co 7341  Fincfn 8864  Basecbs 17112   ·𝑠 cvsca 17157  1rcur 20092   Mat cmat 22315   ScMat cscmat 22397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6433  df-fun 6479  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-scmat 22399
This theorem is referenced by:  scmatscmid  22414  scmatmat  22417  scmatid  22422  scmataddcl  22424  scmatsubcl  22425  scmatmulcl  22426  smatvscl  22432  scmatrhmcl  22436  mat0scmat  22446  mat1scmat  22447  chmaidscmat  22756
  Copyright terms: Public domain W3C validator