![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatel | Structured version Visualization version GIF version |
Description: An 𝑁 x 𝑁 scalar matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
scmatval.k | ⊢ 𝐾 = (Base‘𝑅) |
scmatval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatval.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatval.1 | ⊢ 1 = (1r‘𝐴) |
scmatval.t | ⊢ · = ( ·𝑠 ‘𝐴) |
scmatval.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatel | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatval.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | scmatval.1 | . . . 4 ⊢ 1 = (1r‘𝐴) | |
5 | scmatval.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐴) | |
6 | scmatval.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatval 22526 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → 𝑆 = {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )}) |
8 | 7 | eleq2d 2825 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ 𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )})) |
9 | eqeq1 2739 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝑚 = (𝑐 · 1 ) ↔ 𝑀 = (𝑐 · 1 ))) | |
10 | 9 | rexbidv 3177 | . . 3 ⊢ (𝑚 = 𝑀 → (∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 ) ↔ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 ))) |
11 | 10 | elrab 3695 | . 2 ⊢ (𝑀 ∈ {𝑚 ∈ 𝐵 ∣ ∃𝑐 ∈ 𝐾 𝑚 = (𝑐 · 1 )} ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 ))) |
12 | 8, 11 | bitrdi 287 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉) → (𝑀 ∈ 𝑆 ↔ (𝑀 ∈ 𝐵 ∧ ∃𝑐 ∈ 𝐾 𝑀 = (𝑐 · 1 )))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 Basecbs 17245 ·𝑠 cvsca 17302 1rcur 20199 Mat cmat 22427 ScMat cscmat 22511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-scmat 22513 |
This theorem is referenced by: scmatscmid 22528 scmatmat 22531 scmatid 22536 scmataddcl 22538 scmatsubcl 22539 scmatmulcl 22540 smatvscl 22546 scmatrhmcl 22550 mat0scmat 22560 mat1scmat 22561 chmaidscmat 22870 |
Copyright terms: Public domain | W3C validator |