MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatel Structured version   Visualization version   GIF version

Theorem scmatel 22532
Description: An 𝑁 x 𝑁 scalar matrix over (a ring) 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatval.k 𝐾 = (Base‘𝑅)
scmatval.a 𝐴 = (𝑁 Mat 𝑅)
scmatval.b 𝐵 = (Base‘𝐴)
scmatval.1 1 = (1r𝐴)
scmatval.t · = ( ·𝑠𝐴)
scmatval.s 𝑆 = (𝑁 ScMat 𝑅)
Assertion
Ref Expression
scmatel ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))))
Distinct variable groups:   𝐾,𝑐   𝑁,𝑐   𝑅,𝑐   𝑀,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)   𝑆(𝑐)   · (𝑐)   1 (𝑐)   𝑉(𝑐)

Proof of Theorem scmatel
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 scmatval.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatval.b . . . 4 𝐵 = (Base‘𝐴)
4 scmatval.1 . . . 4 1 = (1r𝐴)
5 scmatval.t . . . 4 · = ( ·𝑠𝐴)
6 scmatval.s . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatval 22531 . . 3 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → 𝑆 = {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )})
87eleq2d 2830 . 2 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )}))
9 eqeq1 2744 . . . 4 (𝑚 = 𝑀 → (𝑚 = (𝑐 · 1 ) ↔ 𝑀 = (𝑐 · 1 )))
109rexbidv 3185 . . 3 (𝑚 = 𝑀 → (∃𝑐𝐾 𝑚 = (𝑐 · 1 ) ↔ ∃𝑐𝐾 𝑀 = (𝑐 · 1 )))
1110elrab 3708 . 2 (𝑀 ∈ {𝑚𝐵 ∣ ∃𝑐𝐾 𝑚 = (𝑐 · 1 )} ↔ (𝑀𝐵 ∧ ∃𝑐𝐾 𝑀 = (𝑐 · 1 )))
128, 11bitrdi 287 1 ((𝑁 ∈ Fin ∧ 𝑅𝑉) → (𝑀𝑆 ↔ (𝑀𝐵 ∧ ∃𝑐𝐾 𝑀 = (𝑐 · 1 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  cfv 6573  (class class class)co 7448  Fincfn 9003  Basecbs 17258   ·𝑠 cvsca 17315  1rcur 20208   Mat cmat 22432   ScMat cscmat 22516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-scmat 22518
This theorem is referenced by:  scmatscmid  22533  scmatmat  22536  scmatid  22541  scmataddcl  22543  scmatsubcl  22544  scmatmulcl  22545  smatvscl  22551  scmatrhmcl  22555  mat0scmat  22565  mat1scmat  22566  chmaidscmat  22875
  Copyright terms: Public domain W3C validator