MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmate Structured version   Visualization version   GIF version

Theorem scmate 21943
Description: An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. (Contributed by AV, 18-Dec-2019.)
Hypotheses
Ref Expression
scmatmat.a 𝐴 = (𝑁 Mat 𝑅)
scmatmat.b 𝐵 = (Base‘𝐴)
scmatmat.s 𝑆 = (𝑁 ScMat 𝑅)
scmate.k 𝐾 = (Base‘𝑅)
scmate.0 0 = (0g𝑅)
Assertion
Ref Expression
scmate (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑅,𝑐   𝐼,𝑐   𝐽,𝑐   𝐾,𝑐   𝑆,𝑐
Allowed substitution hints:   𝐴(𝑐)   𝐵(𝑐)   0 (𝑐)

Proof of Theorem scmate
StepHypRef Expression
1 scmate.k . . . 4 𝐾 = (Base‘𝑅)
2 scmatmat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
3 scmatmat.b . . . 4 𝐵 = (Base‘𝐴)
4 eqid 2732 . . . 4 (1r𝐴) = (1r𝐴)
5 eqid 2732 . . . 4 ( ·𝑠𝐴) = ( ·𝑠𝐴)
6 scmatmat.s . . . 4 𝑆 = (𝑁 ScMat 𝑅)
71, 2, 3, 4, 5, 6scmatscmid 21939 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∃𝑐𝐾 𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴)))
8 oveq 7400 . . . . . . 7 (𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝐼𝑀𝐽) = (𝐼(𝑐( ·𝑠𝐴)(1r𝐴))𝐽))
9 simpll1 1212 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑐𝐾) → 𝑁 ∈ Fin)
10 simpll2 1213 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑐𝐾) → 𝑅 ∈ Ring)
11 simpr 485 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑐𝐾) → 𝑐𝐾)
12 simplr 767 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑐𝐾) → (𝐼𝑁𝐽𝑁))
13 scmate.0 . . . . . . . . 9 0 = (0g𝑅)
142, 1, 13, 4, 5scmatscmide 21940 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐𝐾) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑐( ·𝑠𝐴)(1r𝐴))𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
159, 10, 11, 12, 14syl31anc 1373 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑐𝐾) → (𝐼(𝑐( ·𝑠𝐴)(1r𝐴))𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
168, 15sylan9eqr 2794 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑐𝐾) ∧ 𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴))) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
1716ex 413 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) ∧ 𝑐𝐾) → (𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴)) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
1817reximdva 3168 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → (∃𝑐𝐾 𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
1918ex 413 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ((𝐼𝑁𝐽𝑁) → (∃𝑐𝐾 𝑀 = (𝑐( ·𝑠𝐴)(1r𝐴)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))))
207, 19mpid 44 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ((𝐼𝑁𝐽𝑁) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))
2120imp 407 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝐼𝑁𝐽𝑁)) → ∃𝑐𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  ifcif 4523  cfv 6533  (class class class)co 7394  Fincfn 8924  Basecbs 17128   ·𝑠 cvsca 17185  0gc0g 17369  1rcur 19965  Ringcrg 20016   Mat cmat 21838   ScMat cscmat 21922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4903  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-om 7840  df-1st 7959  df-2nd 7960  df-supp 8131  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-ixp 8877  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-fsupp 9347  df-sup 9421  df-oi 9489  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-9 12266  df-n0 12457  df-z 12543  df-dec 12662  df-uz 12807  df-fz 13469  df-fzo 13612  df-seq 13951  df-hash 14275  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-sca 17197  df-vsca 17198  df-ip 17199  df-tset 17200  df-ple 17201  df-ds 17203  df-hom 17205  df-cco 17206  df-0g 17371  df-gsum 17372  df-prds 17377  df-pws 17379  df-mre 17514  df-mrc 17515  df-acs 17517  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-mhm 18649  df-submnd 18650  df-grp 18799  df-minusg 18800  df-sbg 18801  df-mulg 18925  df-subg 18977  df-ghm 19058  df-cntz 19149  df-cmn 19616  df-abl 19617  df-mgp 19949  df-ur 19966  df-ring 20018  df-subrg 20312  df-lmod 20424  df-lss 20494  df-sra 20736  df-rgmod 20737  df-dsmm 21222  df-frlm 21237  df-mamu 21817  df-mat 21839  df-scmat 21924
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator