Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmate | Structured version Visualization version GIF version |
Description: An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. (Contributed by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
scmatmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatmat.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatmat.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
scmate.k | ⊢ 𝐾 = (Base‘𝑅) |
scmate.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
scmate | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmate.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatmat.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatmat.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | eqid 2759 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
5 | eqid 2759 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
6 | scmatmat.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatscmid 21191 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))) |
8 | oveq 7149 | . . . . . . 7 ⊢ (𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) → (𝐼𝑀𝐽) = (𝐼(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝐽)) | |
9 | simpll1 1210 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → 𝑁 ∈ Fin) | |
10 | simpll2 1211 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → 𝑅 ∈ Ring) | |
11 | simpr 489 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → 𝑐 ∈ 𝐾) | |
12 | simplr 769 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | |
13 | scmate.0 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
14 | 2, 1, 13, 4, 5 | scmatscmide 21192 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
15 | 9, 10, 11, 12, 14 | syl31anc 1371 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → (𝐼(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
16 | 8, 15 | sylan9eqr 2816 | . . . . . 6 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) ∧ 𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
17 | 16 | ex 417 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → (𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
18 | 17 | reximdva 3196 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (∃𝑐 ∈ 𝐾 𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
19 | 18 | ex 417 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (∃𝑐 ∈ 𝐾 𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))) |
20 | 7, 19 | mpid 44 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
21 | 20 | imp 411 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ∃wrex 3069 ifcif 4413 ‘cfv 6328 (class class class)co 7143 Fincfn 8520 Basecbs 16526 ·𝑠 cvsca 16612 0gc0g 16756 1rcur 19304 Ringcrg 19350 Mat cmat 21092 ScMat cscmat 21174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-ot 4524 df-uni 4792 df-int 4832 df-iun 4878 df-iin 4879 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-se 5477 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-isom 6337 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-of 7398 df-om 7573 df-1st 7686 df-2nd 7687 df-supp 7829 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-oadd 8109 df-er 8292 df-map 8411 df-ixp 8473 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-fsupp 8852 df-sup 8924 df-oi 8992 df-card 9386 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-7 11727 df-8 11728 df-9 11729 df-n0 11920 df-z 12006 df-dec 12123 df-uz 12268 df-fz 12925 df-fzo 13068 df-seq 13404 df-hash 13726 df-struct 16528 df-ndx 16529 df-slot 16530 df-base 16532 df-sets 16533 df-ress 16534 df-plusg 16621 df-mulr 16622 df-sca 16624 df-vsca 16625 df-ip 16626 df-tset 16627 df-ple 16628 df-ds 16630 df-hom 16632 df-cco 16633 df-0g 16758 df-gsum 16759 df-prds 16764 df-pws 16766 df-mre 16900 df-mrc 16901 df-acs 16903 df-mgm 17903 df-sgrp 17952 df-mnd 17963 df-mhm 18007 df-submnd 18008 df-grp 18157 df-minusg 18158 df-sbg 18159 df-mulg 18277 df-subg 18328 df-ghm 18408 df-cntz 18499 df-cmn 18960 df-abl 18961 df-mgp 19293 df-ur 19305 df-ring 19352 df-subrg 19586 df-lmod 19689 df-lss 19757 df-sra 19997 df-rgmod 19998 df-dsmm 20482 df-frlm 20497 df-mamu 21071 df-mat 21093 df-scmat 21176 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |