![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmate | Structured version Visualization version GIF version |
Description: An entry of an 𝑁 x 𝑁 scalar matrix over the ring 𝑅. (Contributed by AV, 18-Dec-2019.) |
Ref | Expression |
---|---|
scmatmat.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatmat.b | ⊢ 𝐵 = (Base‘𝐴) |
scmatmat.s | ⊢ 𝑆 = (𝑁 ScMat 𝑅) |
scmate.k | ⊢ 𝐾 = (Base‘𝑅) |
scmate.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
scmate | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmate.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatmat.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatmat.b | . . . 4 ⊢ 𝐵 = (Base‘𝐴) | |
4 | eqid 2797 | . . . 4 ⊢ (1r‘𝐴) = (1r‘𝐴) | |
5 | eqid 2797 | . . . 4 ⊢ ( ·𝑠 ‘𝐴) = ( ·𝑠 ‘𝐴) | |
6 | scmatmat.s | . . . 4 ⊢ 𝑆 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatscmid 20803 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) → ∃𝑐 ∈ 𝐾 𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))) |
8 | oveq 7029 | . . . . . . 7 ⊢ (𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) → (𝐼𝑀𝐽) = (𝐼(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝐽)) | |
9 | simpll1 1205 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → 𝑁 ∈ Fin) | |
10 | simpll2 1206 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → 𝑅 ∈ Ring) | |
11 | simpr 485 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → 𝑐 ∈ 𝐾) | |
12 | simplr 765 | . . . . . . . 8 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | |
13 | scmate.0 | . . . . . . . . 9 ⊢ 0 = (0g‘𝑅) | |
14 | 2, 1, 13, 4, 5 | scmatscmide 20804 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
15 | 9, 10, 11, 12, 14 | syl31anc 1366 | . . . . . . 7 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → (𝐼(𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
16 | 8, 15 | sylan9eqr 2855 | . . . . . 6 ⊢ (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) ∧ 𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴))) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
17 | 16 | ex 413 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) ∧ 𝑐 ∈ 𝐾) → (𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) → (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
18 | 17 | reximdva 3239 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (∃𝑐 ∈ 𝐾 𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
19 | 18 | ex 413 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → (∃𝑐 ∈ 𝐾 𝑀 = (𝑐( ·𝑠 ‘𝐴)(1r‘𝐴)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )))) |
20 | 7, 19 | mpid 44 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) → ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 ))) |
21 | 20 | imp 407 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → ∃𝑐 ∈ 𝐾 (𝐼𝑀𝐽) = if(𝐼 = 𝐽, 𝑐, 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ∃wrex 3108 ifcif 4387 ‘cfv 6232 (class class class)co 7023 Fincfn 8364 Basecbs 16316 ·𝑠 cvsca 16402 0gc0g 16546 1rcur 18945 Ringcrg 18991 Mat cmat 20704 ScMat cscmat 20786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-ot 4487 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-om 7444 df-1st 7552 df-2nd 7553 df-supp 7689 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-oadd 7964 df-er 8146 df-map 8265 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fsupp 8687 df-sup 8759 df-oi 8827 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-fz 12747 df-fzo 12888 df-seq 13224 df-hash 13545 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-sca 16414 df-vsca 16415 df-ip 16416 df-tset 16417 df-ple 16418 df-ds 16420 df-hom 16422 df-cco 16423 df-0g 16548 df-gsum 16549 df-prds 16554 df-pws 16556 df-mre 16690 df-mrc 16691 df-acs 16693 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-mhm 17778 df-submnd 17779 df-grp 17868 df-minusg 17869 df-sbg 17870 df-mulg 17986 df-subg 18034 df-ghm 18101 df-cntz 18192 df-cmn 18639 df-abl 18640 df-mgp 18934 df-ur 18946 df-ring 18993 df-subrg 19227 df-lmod 19330 df-lss 19398 df-sra 19638 df-rgmod 19639 df-dsmm 20562 df-frlm 20577 df-mamu 20681 df-mat 20705 df-scmat 20788 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |