MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgrcl Structured version   Visualization version   GIF version

Theorem sdrgrcl 20705
Description: Reverse closure for a sub-division-ring predicate. (Contributed by SN, 19-Feb-2025.)
Assertion
Ref Expression
sdrgrcl (𝐴 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing)

Proof of Theorem sdrgrcl
StepHypRef Expression
1 issdrg 20704 . 2 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
21simp1bi 1145 1 (𝐴 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6481  (class class class)co 7346  s cress 17141  SubRingcsubrg 20485  DivRingcdr 20645  SubDRingcsdrg 20702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-sdrg 20703
This theorem is referenced by:  imadrhmcl  20713  subsdrg  33262
  Copyright terms: Public domain W3C validator