MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgrcl Structured version   Visualization version   GIF version

Theorem sdrgrcl 20807
Description: Reverse closure for a sub-division-ring predicate. (Contributed by SN, 19-Feb-2025.)
Assertion
Ref Expression
sdrgrcl (𝐴 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing)

Proof of Theorem sdrgrcl
StepHypRef Expression
1 issdrg 20806 . 2 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
21simp1bi 1144 1 (𝐴 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  cfv 6563  (class class class)co 7431  s cress 17274  SubRingcsubrg 20586  DivRingcdr 20746  SubDRingcsdrg 20804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-sdrg 20805
This theorem is referenced by:  imadrhmcl  20815
  Copyright terms: Public domain W3C validator