| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subsdrg | Structured version Visualization version GIF version | ||
| Description: A subring of a sub-division-ring is a sub-division-ring. See also subsubrg 20545. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| subsdrg.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subsdrg.a | ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) |
| Ref | Expression |
|---|---|
| subsdrg | ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | 1 | sdrgss 20740 | . . . . . 6 ⊢ (𝐵 ∈ (SubDRing‘𝑆) → 𝐵 ⊆ (Base‘𝑆)) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (SubDRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑆)) |
| 4 | subsdrg.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) | |
| 5 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 5 | sdrgss 20740 | . . . . . . 7 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 7 | subsdrg.s | . . . . . . . 8 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 8 | 7, 5 | ressbas2 17246 | . . . . . . 7 ⊢ (𝐴 ⊆ (Base‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 9 | 4, 6, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (Base‘𝑆)) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (SubDRing‘𝑆)) → 𝐴 = (Base‘𝑆)) |
| 11 | 3, 10 | sseqtrrd 3994 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ (SubDRing‘𝑆)) → 𝐵 ⊆ 𝐴) |
| 12 | 11 | ex 412 | . . 3 ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) → 𝐵 ⊆ 𝐴)) |
| 13 | 12 | pm4.71d 561 | . 2 ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑆) ∧ 𝐵 ⊆ 𝐴))) |
| 14 | 7 | sdrgdrng 20737 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
| 15 | 4, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
| 16 | sdrgrcl 20736 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing) | |
| 17 | 4, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| 18 | 15, 17 | 2thd 265 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∈ DivRing ↔ 𝑅 ∈ DivRing)) |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝑆 ∈ DivRing ↔ 𝑅 ∈ DivRing)) |
| 20 | sdrgsubrg 20738 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) | |
| 21 | 7 | subsubrg 20545 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| 22 | 4, 20, 21 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| 23 | 22 | rbaibd 540 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ (SubRing‘𝑆) ↔ 𝐵 ∈ (SubRing‘𝑅))) |
| 24 | 7 | oveq1i 7410 | . . . . . . . 8 ⊢ (𝑆 ↾s 𝐵) = ((𝑅 ↾s 𝐴) ↾s 𝐵) |
| 25 | ressabs 17256 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴) → ((𝑅 ↾s 𝐴) ↾s 𝐵) = (𝑅 ↾s 𝐵)) | |
| 26 | 4, 25 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → ((𝑅 ↾s 𝐴) ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 27 | 24, 26 | eqtrid 2781 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝑆 ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 28 | 27 | eleq1d 2818 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → ((𝑆 ↾s 𝐵) ∈ DivRing ↔ (𝑅 ↾s 𝐵) ∈ DivRing)) |
| 29 | 19, 23, 28 | 3anbi123d 1437 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → ((𝑆 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑆) ∧ (𝑆 ↾s 𝐵) ∈ DivRing) ↔ (𝑅 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐵) ∈ DivRing))) |
| 30 | issdrg 20735 | . . . . 5 ⊢ (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝑆 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑆) ∧ (𝑆 ↾s 𝐵) ∈ DivRing)) | |
| 31 | issdrg 20735 | . . . . 5 ⊢ (𝐵 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐵) ∈ DivRing)) | |
| 32 | 29, 30, 31 | 3bitr4g 314 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ (SubDRing‘𝑆) ↔ 𝐵 ∈ (SubDRing‘𝑅))) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → (𝐵 ⊆ 𝐴 → (𝐵 ∈ (SubDRing‘𝑆) ↔ 𝐵 ∈ (SubDRing‘𝑅)))) |
| 34 | 33 | pm5.32rd 578 | . 2 ⊢ (𝜑 → ((𝐵 ∈ (SubDRing‘𝑆) ∧ 𝐵 ⊆ 𝐴) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| 35 | 13, 34 | bitrd 279 | 1 ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3924 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 ↾s cress 17238 SubRingcsubrg 20516 DivRingcdr 20676 SubDRingcsdrg 20733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-mulr 17272 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-subg 19093 df-mgp 20088 df-ur 20129 df-ring 20182 df-subrg 20517 df-sdrg 20734 |
| This theorem is referenced by: constrext2chnlem 33719 |
| Copyright terms: Public domain | W3C validator |