| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subsdrg | Structured version Visualization version GIF version | ||
| Description: A subring of a sub-division-ring is a sub-division-ring. See also subsubrg 20565. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| subsdrg.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subsdrg.a | ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) |
| Ref | Expression |
|---|---|
| subsdrg | ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | 1 | sdrgss 20761 | . . . . . 6 ⊢ (𝐵 ∈ (SubDRing‘𝑆) → 𝐵 ⊆ (Base‘𝑆)) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (SubDRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑆)) |
| 4 | subsdrg.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) | |
| 5 | eqid 2734 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 5 | sdrgss 20761 | . . . . . . 7 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 7 | subsdrg.s | . . . . . . . 8 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 8 | 7, 5 | ressbas2 17260 | . . . . . . 7 ⊢ (𝐴 ⊆ (Base‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 9 | 4, 6, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (Base‘𝑆)) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (SubDRing‘𝑆)) → 𝐴 = (Base‘𝑆)) |
| 11 | 3, 10 | sseqtrrd 4001 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ (SubDRing‘𝑆)) → 𝐵 ⊆ 𝐴) |
| 12 | 11 | ex 412 | . . 3 ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) → 𝐵 ⊆ 𝐴)) |
| 13 | 12 | pm4.71d 561 | . 2 ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑆) ∧ 𝐵 ⊆ 𝐴))) |
| 14 | 7 | sdrgdrng 20758 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
| 15 | 4, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
| 16 | sdrgrcl 20757 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing) | |
| 17 | 4, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| 18 | 15, 17 | 2thd 265 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∈ DivRing ↔ 𝑅 ∈ DivRing)) |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝑆 ∈ DivRing ↔ 𝑅 ∈ DivRing)) |
| 20 | sdrgsubrg 20759 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) | |
| 21 | 7 | subsubrg 20565 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| 22 | 4, 20, 21 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| 23 | 22 | rbaibd 540 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ (SubRing‘𝑆) ↔ 𝐵 ∈ (SubRing‘𝑅))) |
| 24 | 7 | oveq1i 7422 | . . . . . . . 8 ⊢ (𝑆 ↾s 𝐵) = ((𝑅 ↾s 𝐴) ↾s 𝐵) |
| 25 | ressabs 17270 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴) → ((𝑅 ↾s 𝐴) ↾s 𝐵) = (𝑅 ↾s 𝐵)) | |
| 26 | 4, 25 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → ((𝑅 ↾s 𝐴) ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 27 | 24, 26 | eqtrid 2781 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝑆 ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 28 | 27 | eleq1d 2818 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → ((𝑆 ↾s 𝐵) ∈ DivRing ↔ (𝑅 ↾s 𝐵) ∈ DivRing)) |
| 29 | 19, 23, 28 | 3anbi123d 1437 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → ((𝑆 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑆) ∧ (𝑆 ↾s 𝐵) ∈ DivRing) ↔ (𝑅 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐵) ∈ DivRing))) |
| 30 | issdrg 20756 | . . . . 5 ⊢ (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝑆 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑆) ∧ (𝑆 ↾s 𝐵) ∈ DivRing)) | |
| 31 | issdrg 20756 | . . . . 5 ⊢ (𝐵 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐵) ∈ DivRing)) | |
| 32 | 29, 30, 31 | 3bitr4g 314 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ (SubDRing‘𝑆) ↔ 𝐵 ∈ (SubDRing‘𝑅))) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → (𝐵 ⊆ 𝐴 → (𝐵 ∈ (SubDRing‘𝑆) ↔ 𝐵 ∈ (SubDRing‘𝑅)))) |
| 34 | 33 | pm5.32rd 578 | . 2 ⊢ (𝜑 → ((𝐵 ∈ (SubDRing‘𝑆) ∧ 𝐵 ⊆ 𝐴) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| 35 | 13, 34 | bitrd 279 | 1 ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 ↾s cress 17251 SubRingcsubrg 20536 DivRingcdr 20696 SubDRingcsdrg 20754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-3 12311 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-ress 17252 df-plusg 17285 df-mulr 17286 df-0g 17456 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-subg 19109 df-mgp 20105 df-ur 20146 df-ring 20199 df-subrg 20537 df-sdrg 20755 |
| This theorem is referenced by: constrext2chnlem 33721 |
| Copyright terms: Public domain | W3C validator |