| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subsdrg | Structured version Visualization version GIF version | ||
| Description: A subring of a sub-division-ring is a sub-division-ring. See also subsubrg 20513. (Contributed by Thierry Arnoux, 26-Oct-2025.) |
| Ref | Expression |
|---|---|
| subsdrg.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| subsdrg.a | ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) |
| Ref | Expression |
|---|---|
| subsdrg | ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . . . 7 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | 1 | sdrgss 20708 | . . . . . 6 ⊢ (𝐵 ∈ (SubDRing‘𝑆) → 𝐵 ⊆ (Base‘𝑆)) |
| 3 | 2 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (SubDRing‘𝑆)) → 𝐵 ⊆ (Base‘𝑆)) |
| 4 | subsdrg.a | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (SubDRing‘𝑅)) | |
| 5 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 5 | sdrgss 20708 | . . . . . . 7 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ⊆ (Base‘𝑅)) |
| 7 | subsdrg.s | . . . . . . . 8 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 8 | 7, 5 | ressbas2 17214 | . . . . . . 7 ⊢ (𝐴 ⊆ (Base‘𝑅) → 𝐴 = (Base‘𝑆)) |
| 9 | 4, 6, 8 | 3syl 18 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (Base‘𝑆)) |
| 10 | 9 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ∈ (SubDRing‘𝑆)) → 𝐴 = (Base‘𝑆)) |
| 11 | 3, 10 | sseqtrrd 3992 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ∈ (SubDRing‘𝑆)) → 𝐵 ⊆ 𝐴) |
| 12 | 11 | ex 412 | . . 3 ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) → 𝐵 ⊆ 𝐴)) |
| 13 | 12 | pm4.71d 561 | . 2 ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑆) ∧ 𝐵 ⊆ 𝐴))) |
| 14 | 7 | sdrgdrng 20705 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑆 ∈ DivRing) |
| 15 | 4, 14 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑆 ∈ DivRing) |
| 16 | sdrgrcl 20704 | . . . . . . . . 9 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝑅 ∈ DivRing) | |
| 17 | 4, 16 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ DivRing) |
| 18 | 15, 17 | 2thd 265 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∈ DivRing ↔ 𝑅 ∈ DivRing)) |
| 19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝑆 ∈ DivRing ↔ 𝑅 ∈ DivRing)) |
| 20 | sdrgsubrg 20706 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) | |
| 21 | 7 | subsubrg 20513 | . . . . . . . 8 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| 22 | 4, 20, 21 | 3syl 18 | . . . . . . 7 ⊢ (𝜑 → (𝐵 ∈ (SubRing‘𝑆) ↔ (𝐵 ∈ (SubRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| 23 | 22 | rbaibd 540 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ (SubRing‘𝑆) ↔ 𝐵 ∈ (SubRing‘𝑅))) |
| 24 | 7 | oveq1i 7404 | . . . . . . . 8 ⊢ (𝑆 ↾s 𝐵) = ((𝑅 ↾s 𝐴) ↾s 𝐵) |
| 25 | ressabs 17224 | . . . . . . . . 9 ⊢ ((𝐴 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴) → ((𝑅 ↾s 𝐴) ↾s 𝐵) = (𝑅 ↾s 𝐵)) | |
| 26 | 4, 25 | sylan 580 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → ((𝑅 ↾s 𝐴) ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 27 | 24, 26 | eqtrid 2777 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝑆 ↾s 𝐵) = (𝑅 ↾s 𝐵)) |
| 28 | 27 | eleq1d 2814 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → ((𝑆 ↾s 𝐵) ∈ DivRing ↔ (𝑅 ↾s 𝐵) ∈ DivRing)) |
| 29 | 19, 23, 28 | 3anbi123d 1438 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → ((𝑆 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑆) ∧ (𝑆 ↾s 𝐵) ∈ DivRing) ↔ (𝑅 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐵) ∈ DivRing))) |
| 30 | issdrg 20703 | . . . . 5 ⊢ (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝑆 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑆) ∧ (𝑆 ↾s 𝐵) ∈ DivRing)) | |
| 31 | issdrg 20703 | . . . . 5 ⊢ (𝐵 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐵) ∈ DivRing)) | |
| 32 | 29, 30, 31 | 3bitr4g 314 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ (SubDRing‘𝑆) ↔ 𝐵 ∈ (SubDRing‘𝑅))) |
| 33 | 32 | ex 412 | . . 3 ⊢ (𝜑 → (𝐵 ⊆ 𝐴 → (𝐵 ∈ (SubDRing‘𝑆) ↔ 𝐵 ∈ (SubDRing‘𝑅)))) |
| 34 | 33 | pm5.32rd 578 | . 2 ⊢ (𝜑 → ((𝐵 ∈ (SubDRing‘𝑆) ∧ 𝐵 ⊆ 𝐴) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| 35 | 13, 34 | bitrd 279 | 1 ⊢ (𝜑 → (𝐵 ∈ (SubDRing‘𝑆) ↔ (𝐵 ∈ (SubDRing‘𝑅) ∧ 𝐵 ⊆ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 ↾s cress 17206 SubRingcsubrg 20484 DivRingcdr 20644 SubDRingcsdrg 20701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-subg 19061 df-mgp 20056 df-ur 20097 df-ring 20150 df-subrg 20485 df-sdrg 20702 |
| This theorem is referenced by: constrext2chnlem 33748 |
| Copyright terms: Public domain | W3C validator |